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ABSTRACT

Interference and collisions greatly limit the throughput of mesh networks that

used contention-based MAC protocols such as 802.11. It is widely believed that sig-

nificantly higher throughput is achievable if transmissions are scheduled. However,

since the typical approach to this throughput optimization requires optimizing over

a space that is exponential in the number of links, the optimal throughput has ap-

peared to be computationally intractable for all but small networks. This research

presents techniques that are typically able to efficiently compute optimal schedules

as well as optimal routing.

The technique consists of three layers of optimization. The inner-most opti-

mization computes an estimate of the throughput. This optimization is a standard

linear or nonlinear constrained optimization, depending on the objective function.

The middle iteration uses the Lagrange multipliers from the inner-most optimiza-

tion to modify the space over which inner-most optimization is performed. This is

a graph theoretic optimization known as the maximum weighted independent set

(MWIS) problem. The solvability of this problem is extensively studied, and the

empirical evidence shows that usually MWIS arising from wireless mesh network

can be solved quickly. The outer-most optimization uses the Lagrange multipliers

from the inner-most optimization to find optimal routes. This optimization solves

several least cost paths problems and several maximum weighted independent set

problems.

Together, these techniques allow optimal schedules to be computed for net-

works with hundreds and even a few thousand links, and allow optimal routes to be
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computed for networks with a few hundred links. Thus, the approach scales to the

size of current and planned urban mesh networks. The techniques have been verified

on networks generated with a realistic urban propagation simulator. In this setting,

it is shown that optimal scheduling increases the throughput by a factor between

three and ten over 802.11 CSMA/CA, depending on the density of the mesh routers

and gateways.

This thesis also studies the communication models. It is well known that the

traditional protocol models have the drawback that they do not accurately model

interference. Therefore, the actual throughput provided by these traditional protocol

models is poor no matter how good the theoretical throughput offered. A general

SINR protocol model is proposed to more accurately represent the interference.

Furthermore, techniques were developed to overcome the interference from multiple

sources.

The ability to accommodate links that support multiple bit-rates andmultiple

transmit powers (e.g., 802.11) has been largely neglected by previous efforts on

throughput maximization. Accommodating all possible bit-rates and transmission

powers into the schemes developed in this thesis greatly increases the computational

complexity. Thus, several heuristics are developed and examined.
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Chapter 1

INTRODUCTION

By providing connectivity to mobile users, mesh networks are poised to be-

come a major extension to the Internet. More than 400 cities and towns have plans

to deploy mesh networks, and several dozen cities have already deployed mesh net-

works [1]. While some deployments have been in smaller cities, such as Mountain

View, CA, and Milpitas, CA, some deployments have been in larger cities such

as Corpus Christi’s 147 sq. mile deployment. Furthermore, large cities such as

Philadelphia and San Francisco are in the final planning stages of city-wide, dense

deployments. These mesh networks are meant to enhance city and emergency ser-

vices communication as well as to provide city-wide, low-cost, ubiquitous Internet

access for residents and visitors. Such networks promise to bring dramatic changes

to data accessibility and hence have a major impact on society.

1.1 The Mesh Network Scenario

In the research literature, two types of mesh networks are discussed. One is

referred to as an enterprise mesh network. Such networks cover a relatively small

area, e.g., a college or a business campus, or may even be confined to a single

building such as a hospital or airport terminal. The second type of mesh network

are large-scale urban mesh networks (LUMNets or simply UMNets). However, as

the deployment of these networks continues to expand, they are not always in urban

areas. Thus, a better term is large-scale mesh networks (LMNets). Today, while
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many of the current deployments include only outdoor nodes, several include indoor

nodes as well (e.g., Google’s network in Mountain View, CA).

A distinguishing feature of urban mesh networks is the presence of a large

number of infrastructure nodes, each with relatively small coverage (i.e., pico or

femto cells). This contrasts cellular networks that have far fewer infrastructure

nodes, each with large regions of coverage. Urban mesh networks also differ from

traditional mobile ad hoc networks in that they have a fixed infrastructure that

includes some wired base stations. On the other hand, mesh networks are similar

to ad hoc networks in that paths may cross multiple wireless links. However, a

path in a mesh network typically includes multiple infrastructure to infrastructure

hops and a single infrastructure to mobile hop. These mesh networks, as opposed

to cellular networks, wireless LANS, MANETs, and sensor networks, offer distinct

features that allow throughput to be realistically maximized.

• The infrastructure nodes (INs) in a mesh network are powered, and hence the

energy is not a critical concern.

• INs can have substantial computational power. This power can be in the

form of general microprocessors or specialized computational engines such as

DSPs and FGPAs. Thus, in terms of computation, INs may be significantly

different from nodes in MANETs and sensor networks. It is important to

note that while INs can include significant computational power, including

computational engines in INs must be justified with significant performance

improvements.

• In addition to computational power, INs may also have specialized hardware

to support time synchronization. This could include GPS, chip-based atomic

clocks, or CDMA-based clocks.
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• Unlike nodes in MANETs, INs are stationary. This allows the INs to make

intense measurements of the environment. The channels between INs are not

static. However, there exists time-varying channels. Since the INs are sta-

tionary and not energy constrained, it is possible to make detailed channel

measurements and estimate the channel model parameters. Since this estima-

tion can proceed continuously, detailed channel models are feasible.

• While sensor and MANETs are purely self-organizing, in terms of adminis-

tration, mesh networks resemble wired networks. For example, with the help

of distributed monitors, network administrators will measure and "tune" the

network. Furthermore, since mesh service providers must meet service agree-

ments, the capability to perform manual traffic engineering is desirable.

• While client nodes will follow the standard versions of 802.11, in today’s de-

ployments, the INs within a mesh network are typically made by a single

vendor. Hence, specialized protocols can be used for IN to IN communica-

tion, while still using standard 802.11 for communication between clients and

INs. For example, in today’s deployments, vendors use proprietary routing

protocols (e.g., [2]). Thus, small modifications to 802.11 for IN to IN commu-

nication is realistic. The development of entirely new MAC protocols is also

possible, but, of course, this must be justified with substantial improvements

in performance.

1.2 Motivation

Based on realistic simulations of mesh networks [3], it is clear that coverage

and throughput are critical problems facing mesh networks. While throughput has

been a long standing problem in wireless networking, the problem has now become

urgent. Specifically, with the current data rates provided by 802.11, the mesh net-

works that are currently being deployed will likely not meet the data rate needs of
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the users. For this reason, within the industry that is currently deploying mesh net-

works, throughput has been identified as the chief concern facing future deployments

[4]. On the other hand, maximizing throughput has been an open problem for at

least twenty years. However, this thesis presents significant advances in throughput

maximization. The techniques presented here allow throughput to be maximized for

networks with several hundreds or even thousands of links. Hence, these techniques

are suitable for all current and planned mesh networks. Moreover, based on com-

putations from realistic urban mesh networks, it is concluded that improvements

might exceed a factor of 10.

1.3 Problem Statement

The main factor that limits throughput in wireless mesh networks is interfer-

ence which is the consequence of sharing a communication medium. The concurrent

transmissions of multiple links cause interference at each link, and some links may

reduce the transmission rate to overcome the interference. Moreover, some links

may not be able to transmit if the interference is too large. Therefore, it is known

that the transmissions must be scheduled in order to achieve high throughput.

The basic challenge facing throughput maximization is that the space of

solutions grows exponentially with the number of links. For example, if power

control is not used, then one must maximize over a polytope with 2L extreme points,

where L is the number of links. More specifically, we define an assignment to be a

specification of which links are transmitting and which links are not transmitting.

A schedule is the convex sum of assignments, which specifies the fraction of time

that each assignment is used. The main challenge to the throughput maximization

problem has been that the space of all assignments is too large. For example, when

L = 88, the space of all assignments is 288, which is larger than the number of

nanoseconds in the age of the universe.
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In order to solve the throughput maximization problem, the space of assign-

ments must be reduced. One approach, followed in [5], is to arbitrarily restrict the

focus to a subset of all assignments. However, this approach reduces the resulting

throughput. For example, in [5], it was found that increasing the size of the solution

space improves the throughput. Another approach is to develop a heuristic to de-

termine the subset of considered assignments [6], [7]. However, the performance of

these methods typically decreases as the number of links increases [6], [7]. Finally,

one can take a brute force approach, and consider the entire set of assignments.

This approach is taken in [8], where, due to computational difficulties, the largest

network that could be solved has only 15 links.

Like several other approaches to throughput maximization, the approach

presented here also restricts the solution space. However, we employ an iterative

approach that uses the Lagrange multipliers from the previous iteration to help select

the subset of assignments for the next iteration. The result is that after relatively few

iterations, the set of considered assignments is relatively small but is such that the

optimal solution restricted to the subset provides the same performance as does the

optimal solution when all assignments are considered. Also, it was shown in Chapter

3 that the algorithm of optimal scheduling converges geometrically or algebraically

in terms of different objective functions.

Besides solving the basic throughput maximization problem, this thesis also

considers a wide range of so called "communication models". The literature today

contains many different communication models, which can be classified into two

types, named as physical communication model and protocol communication model.

It is well known that protocol communication models are unrealistic because of the

inaccurate modeling of the interference and the neglect of the aggregate interference.

We propose a general SINR protocol communication model, and the drawbacks of

the protocol communication models can easily be alleviated.
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An important aspect of our solution to the throughput optimization problem

is reducing the original optimization problem to a graph theoretic problem known as

the maximum weighted independent set (MWIS) problem. While it is known that

in the worst case the MWIS problem is NP-hard, there has been a huge amount of

effort in solving and understanding the MWIS problem. This thesis leverages this

work to produce several ways to attack the MWIS problem that arises when opti-

mizing throughput. Two basic approaches are investigated, namely, exactly solving

the MWIS problem, and approximately solving the MWIS problem. In the first

approach there are several options including specialized computational techniques

for finding MWIS, specialized techniques for finding the largest weighted clique, and

general computational techniques for solving integer programming problems. Simi-

larly, there are many approximation techniques. Along with approximate methods,

we compute the Lovasz number in order to determine whether the approximation is

indeed optimal.

The complexity of the set of MWIS problems that arise in wireless schedule

is unknown. Without theoretic analysis of the complexity of MWIS, a large number

of computational experiments with more than 10,000 topologies were examined to

explore the complexity of MWIS. The empirical evidence shows that MWIS from

the wireless scheduling can be quickly solved, for example it takes around 1 sec to

find a MWIS for a wireless mesh network with 2048 nodes.

While the techniques described above can quickly find the optimal schedule

for large networks, the problem becomes computationally complex if links use a wide

range of bit-rate and transmission powers. In this case, each physical link is repre-

sented as many logical links, one logical link for each combination of transmission

power and bit-rate. Techniques to reduce the number of bit-rates and transmis-

sion powers considered greatly improve the computational complexity, but may also

reduce the resulting throughput. This thesis examines these issues in detail.
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Once optimal schedules can be efficiently computed, it becomes possible to

compute optimal routes. In general, the computational complexity of routing is

exponential in the number of nodes in the network. However, using a technique that

is similar to the technique used to develop optimal schedules; the routing problem is

decomposed into an iterative problem where Lagrange multipliers from the schedule

optimization are used to adjust the routing problem.

1.4 Key Contributions

This dissertation provides an approach to maximize the throughput of an

urban mesh network. The following are the key contributions of this dissertation.

• An optimization-based approach to computing the optimal throughput of ur-

ban mesh network is provided. While previous efforts have been unable to

compute optimal schedules for networks with more than a few tens of links,

the methods presented here can be applied to networks with hundreds or even

thousands of links. The algorithms have been tested on realistic mesh net-

works generated by the UDelModels, a publicly available tool for computing

urban propagation.

• A detailed analysis of Protocol Communication Models and Physical Com-

munication Models is provided. Moreover, a general SINR protocol commu-

nication model is proposed to accurately represent the pairwise interference,

while the techniques are also developed to accommodate the interference from

multi-sources.

• A detailed analysis of methods to compute new assignments via solving a maxi-

mum weighted independent set (MWIS) problems, where the graph arises from

an urban mesh network. One of the main obstacles of prior work on through-

put optimization is the inability to solve related graph theoretic optimization
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problems such as finding MWIS or maximum matchings. This thesis shows

that a range of techniques can be used to compute or estimate the MWIS.

Furthermore, a large number of simulations show that MWIS in the wireless

mesh network can be solved very quickly.

• The technique of finding optimal routing is similar to that of optimal schedul-

ing. While most previous works are computationally intractable and/or ne-

glect co-channel interference, this thesis provides a solution which is practi-

cally feasible due to the quick solvability of optimal scheduling, and is able to

account for the co-channel interference if the general SINR protocol commu-

nication model is used.

• While most prior works consider a link with a single bit-rate and a single

transmit power, this thesis presents techniques to compute throughput when

links support different bit-rates and transmit powers.

1.5 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 briefly introduces

some related work. Chapter 3 presents the optimization-based approach to finding

the optimal throughput of urban mesh network. The approach focuses on reducing

the size of the space of assignments and finding a new assignment that passes the

linear test (3.9). Chapter 4 presents the communication models that can be di-

vided into Protocol Communication Models and Physical Communication Models.

The throughput of a network depends on the capabilities of the MAC and physical

layer. Several examples of each type of model are discussed. Chapter 5 presents

the methods to construct the set of considered assignments. Brief descriptions of

the construction of initial set of assignments and the redundancy removal are pro-

vided. Various algorithms to find the new assignment are the keys of this chapter.
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Then, chapter 6 presents the methods to generate different kind of network topolo-

gies. Several numerical experiments used to validate the above results are provided.

Chapter 7 presents the solvability of MWIS in the wireless mesh network through

a large set of simulations. It shows that the MWIS can be solved quickly although

the worst case complexity of MWIS is NP-hard. Chapter 8 provides the joint op-

timal routing and optimal scheduling scheme, and Chapter 9 presents the optimal

scheduling when multi-bit rates and power control are deployed. Finally, Chapter

10 provides concluding remarks and the directions for future work.
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Chapter 2

RELATED WORK

The optimal throughput of multi-hop wireless network has been an active

area of research in the recent years. A large number of papers have been published

regarding the methods to find the optimal or approximate optimal throughput. We

focus on the optimization-based approach.

Utility optimization of wired networks was pioneered by the seminal works

of Kelly [9], Low [10]. The same framework has been extended to ad hoc networks

in [11, 12]. MAC scheduling, power control, and routing are closely related to the

network throughput and will be reviewed respectively.

2.1 Scheduling

2.1.1 Interference Model

The main factor that limits throughput in wireless mesh networks is interfer-

ence which is the consequence of sharing a communication medium. Hence, an ac-

curate modeling of interference is fundamental in order to derive theoretical and/or

simulation-based results. In the literature, two main interference models are the

protocol model and the physical model.

Much of the prior work utilizes the simplistic protocol communication mod-

els such as the primary (i.e., one-hop) and secondary (i.e., two-hop) conflict models

which are oblivious to the co-channel interference. The primary interference model,

also called the node exclusive model, merely assumes that a node cannot simulta-

neously transmit and receive on the same channel. In other words, two links can
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transmit simultaneously on the same channel no matter how close they are, as long

as they do not share the same node. As will be shown in detail in Chapter 6,

the co-channel interference is fully neglected and the node exclusive model is not

realistic.

It is well known that finding a new assignment is equivalent to finding a

Maximum Weighted Independent Set (MWIS) in the weighted conflict graph. Un-

fortunately, in the worst-case, the MWIS problem is NP-hard [13]. It is important

to note that under the node exclusive communication model (i.e., when co-channel

interference does not arise), the MWIS problem reduces to a maximum matching

problem, which is known to be solvable in polynomial time [14, 15] and in some

cases can be solved with distributed message passing [16]. It is also known that a

maximal matching is a 1/2 approximation of a maximum matching [17]. Also, there

exists a distributed approximate algorithm [18] which achieves 2/3 approximation

of a maximum matching.

Therefore, neglecting co-channel interference guarantees that the throughput

maximization problem has polynomial complexity. Due to this tractability, the

node exclusive model has received considerable attention. Consequently, tremendous

progress has been made and the general approaches to throughput maximization

have been well developed. Many of these approaches are exploited by our prior

effort. Works that rely on the node exclusive model include [19, 20, 21, 22, 23, 24,

25, 26, 27, 28, 29, 30, 31].

The 2-hop or k-hop communication model is an extension of the node ex-

clusive model. However, it still lacks a realistic representation of co-channel in-

terference. In fact, it has the important drawback that it does not consider the

accumulation of interference, that is, while communication across link A might

be possible while node B or node C are transmitting, it might not be possible

to communicate across link A if both B and C are transmitting. Furthermore,
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this model also results in the throughput maximization problem being NP-hard

(in the worst case) [32]. Efforts that utilize the 2-hop or k-hop model include

[33, 34, 32, 35, 36, 37, 38, 39, 29, 40, 26, 41]. Due to the fact that it can be used to

mimic the behavior of CSMA/CA networks such as IEEE 802.11, the 2-hop inter-

ference model has been most widely used in the literature.

In the physical interference model, a transmission from node u and v is

successful if the SINR (signal to interference and noise ratio) is above a certain

threshold, whose value depends on the desired data rate. The effect of co-channel

interference or aggregate co-channel interference can be accurately modeled under

this model. There has also been significant efforts to find the throughput of a wire-

less mesh network under the physical model, but focusing on suboptimal solutions.

Among the notable works in this direction are [7] and [40] in that they find a bound

on how far the solutions are from optimal. However, these bounds are only valid un-

der free-space propagation. Other works that focus on suboptimal throughput and

do consider co-channel interference include [43] and [5]. To the best of our knowl-

edge, we are the first to present a viable algorithm to achieve maximum throughput

under co-channel interference.

2.1.2 Optimization Space

The main obstacle facing throughput maximization is that the size over which

the optimization is performed is exponential with the number of links [8, 44, 5,

45]. For example, if power control is not used, then one must maximize over a

polytope with 2L extreme points, where L is the number of links. In order to solve

the throughput maximization problem, the space of assignments must be reduced.

One approach, followed in [5], is to arbitrarily restrict the focus to a subset of

all assignments. However, this approach reduces the resulting throughput. For

example, in [5], it was found that increasing the size of the solution space improves

the throughput. Another approach is to develop a heuristic to determine the subset
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of considered assignments in [6, 7]. However, the performance of these methods

typically decreases as the number of links increases. Finally, one can take a brute

force approach, and consider the entire set of assignments. This approach is taken

in [8], where, due to computational difficulties, the largest network that could be

solved has only 15 links.

2.1.3 Global and Local Information

Perhaps one of the most serious drawbacks of our algorithm is that it requires

global knowledge. It is quite common for scheduling to require global knowledge

(e.g., [19, 20, 46, 7, 36, 40, 47, 43, 5, 8]). On the other hand, a simple fully distributed

approach is appealing and has advantages in terms of robustness.

In the literature, several distributed techniques have been suggested. These

include the subgradient-based schemes [47, 8, 48, 49, 50, 51, 52, 31, 27], back-pressure

schemes [19, 31], and randomized searching techniques [53]. In the case of back-

pressure, it should be pointed out that the schemes described in [19, 31] rely on

centralized scheduling. However, the routing and congestion control are distributed.

For the case where co-channel interference does not arise, there exists distrib-

uted subgradient-based schemes that are approximately optimal. As explained in

[54], the subgradient-based scheme suffers from poor performance in large networks.

While the technique of using Lagrange multipliers to help find good assignments

appears to be new, there are several prior efforts that share some computational

techniques with the proposed effort. These efforts include [24, 25, 32, 26, 55, 56, 57].

2.2 Routing

Like the optimal scheduling problem, there has been extensive work on joint

optimal scheduling and routing, but the techniques are computationally intractable

and/or neglect co-channel interference [58, 59, 31, 8, 5, 28, 40, 60, 41, 20, 19, 61].
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One challenge is that, in the worst case, the number of paths between a source-

destination pair increases exponentially with the size of the network. Thus, like

scheduling, a naive approach is not viable for moderately sized networks.

However, in a way that is similar to our solution to the scheduling problem,

we have developed a technique that iteratively adds paths to the set of considered

paths until the optimal set of paths is found.

2.3 Power Control

Power control in multi-hop wireless network is an extensively researched topic

[8, 47, 62]. One approach is to explore the theoretical aspects of power control

for throughput maximization and not directly address the size of the problem. In

[8], Cruz shows that power control does not improve the performance with the

assumption that SINR at the receiver is low. The senders always transmit with full

power. In [47], it is showed that power control can converge to the global optimal of

the CDMA network when we assume that receivers have high SINR. However, in the

realistic wireless mesh network, it is impossible to determine which links have high

SINR and which links have low SINR, because it depends on many of factors such

as channel gains, scheduling, and transmission powers of the active links. Therefore,

it is difficult to find the actual effect of power control on the optimal throughput in

the realistic wireless mesh network.

On the other hand, many heuristic methods are developed to solve the power

control problem and obtain good throughput for wireless mesh network. As we men-

tioned above, we do not know how far the good throughput is from the optimal due

to the unknown of the optimal. Thus, a practical computation of optimal scheduling

and optimal power control is proposed in our work. Moreover, the scheduling sup-

ports multiple data rates for each link which is seldom considered in previous works.

The framework described in this work appears to be significantly more general than

prior research.
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Chapter 3

OPTIMAL SCHEDULING

3.1 Introduction

The throughput of multihop wireless networks has been the subject of intense

research ([31, 44, 8, 6, 27]). There is extensive motivation for this research. For ex-

ample, in the mesh network setting, determining throughput is useful for network

planning. Also, routing and throughput are closely related, and hence, the perfor-

mance of routing protocols can be greatly improved if the throughput that results

from a particular routing can be determined. The optimal throughput provides an

upper bound on heuristic techniques, and provides a means to judge the quality of

the heuristic. Also, there is theoretical interest in throughput; for example, there

has been interest in how the throughput varies as a function of the number of nodes

[63].

Generally, there have been two approaches to maximize the throughput of

a wireless network, namely, a heuristic-based approach and an optimization-based

approach. In the optimization-based approach, an objective function is defined and

this objective is maximized subject to the constraints imposed by interference. For

example, it is common to define an objective function to be a concave increasing

function of flow rates; this function is often referred to as a utility function and it can

be shown that maximizing such functions results in fairness among flows ([9, 64, 27]).

This chapter focuses on this class of problems. Other, non-utility-based approaches

include [8], which minimizes a linear function of transmission powers subject to a
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link bit-rate constraint and other constraints imposed by interference. A different

throughput problem is related to maximizing an objective function when the traffic

demands are stochastic [65].

A critical problem with the optimization-based approaches is that the re-

sulting problem is computationally difficult. More specifically, in order to maximize

throughput, the optimal allocation of resources must be determined. This allocation

is defined by a schedule that dictates when links transmit and at which frequencies

and powers they transmit. However, the space of schedules is extremely large. For

example, if power control is not used, then one must maximize over a polytope with

2L extreme points, where L is the number of links. More specifically, we define an

assignment to be a specification of which links are transmitting and which links are

not transmitting. A schedule is the convex sum of assignments; hence the assign-

ments are the extreme points of the space of schedules. If power control is not used,

then the space of assignments contains 2L elements. If power control is used, then an

assignment specifies not only which links are transmitting, but also the transmission

power. In this case, the space of assignments is [0, 1]L. If one attempts to approx-

imate this continuous space with a discrete grid such as {0, 0.33, 0.67, 1}L, then the

space has 4L elements. To comprehend the size of 2L, consider a network with only

88 links, which is far smaller than the mesh networks being deployed throughout

the world. However, 288 nsec is the approximate age of the universe. Hence, it is

intractable to even initialize the problem. Due to the exponential dependence on

the number of links, after considerable reduction of the problem, [8] reports being

unable to compute the optimal schedule for a network with more than 15 links.

Due to the computational difficulties, there has been extensive research of

heuristic-based approaches (e.g., [6, 34, 33]). While such methods are tractable, and

may greatly improve the performance, one is unsure as to how much performance

could be further improved if optimization was used.
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This thesis focuses on the optimization-based approach which focuses on

reducing the size of the space of assignments. There are two key theoretical results

that underpin this approach.

• While the optimization may be performed over a space with 2L assignments

(if power control is used, the space is [0, 1]L), the optimal solution is the

combination of no more than L assignments. Therefore, if these L assignments

were somehow known in advance, then the optimization could be performed

over a space with L assignments and the result would be identical to the one

found by optimizing over the space of all assignments.

• Guided by this result, we focus on searching for these special L assignments.

From a solution of the optimization problem over an arbitrary set of L ele-

ments, either

— a new set of elements can be found that will improve the solution, which,

in turn, leads to a better set of elements, and so on,

— or, if no set of better elements exists, then the current set of elements is

optimal.

Chapter 5 presents several methods to search for assignments that are known

as Maximum Weighted Independent Set (MWIS) problem. Chapter 6 examines the

performance of these search methods.

The remainder of the chapter proceeds as follows. In the next section, the

system model and notation are presented. The algorithm for optimal scheduling

and the corresponding convergence property are discussed in Section 3.3.

3.2 System Model and Problem Formulation

A router-to-router flow is denoted by φ, with Φ denoting the set of all such

flows. To improve presentation, it is assumed that all flows use a single path,
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however, the extension to multipath is straightforward. The data rate of flow φ is

denoted by fφ, and the path followed by flow φ is denoted byP (φ). The set of all

considered paths is P. Using this notation, the total data rate sent over link x isP
{φ|x∈P (φ)} fφ, where {φ |x ∈ P (φ)} is the set of flows that cross link x. All links

are directional.

We define an assignment to be a vector v =
h
v1 · · · vL

i
, where there are

L links in the network and where vx ∈ {0, 1} with vx = 1 implying that link x is

active during assignment v. It is possible to extend this approach to accommodate

links with multiple bit-rates and multiple transmit powers. The set of considered

assignments is denoted by V, while the set of all assignments is denoted by V. In

this simple case where vx ∈ {0, 1}, V has 2L assignments. The size of V is the main

challenge facing optimal scheduling. Thus, typically, we only consider a subset of

all assignments, i.e., V $V.

The data rate across link x during assignment v is denoted by R (v, x). In

general R (v, x) is a complicated function. However, here a simple binary relation-

ship is used to define R (v, x). Specifically,

R (v, x) =

⎧⎨⎩ Rx if vy = 0 for all y ∈ χ (x)

0 otherwise
, (3.1)

where χ (x) is a set of links that conflict with x, i.e., y ∈ χ (x) if simultaneous

transmissions over x and y are not possible. Rx is the nominal data rate over link x.

Techniques to select the nominal data rate for a link are detailed in chapter 4. Here,

let Rx be the maximum data rate that the SNR across link x can support. Note

that this definition of R (v, x) neglects the possibility of transmission errors due to

the aggregate interference from several links not in χ (x). However, as discussed

in Section 5.3, such problems can easily be addressed. All computations in this

work use this technique, and hence the computed throughputs account for multiple

interferers. This definition of R (v, x) also neglects the possibility that R (v, x) can
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take intermediate values between Rx and 0. For example, in the face of moderate

interference, retransmissions will result in an effective data rate that is below Rx.

With a slight modification, this behavior can be supported by employing a multi-

valued definition of R (v, x). Future work will investigate such modifications.

The set of conflicting links, χ (x), depends on the communication model.

Arguably, the SINR protocol communication model is the most relevant and is the

model used in this work. Let SINR (x, y) be the SINR at the receiver of link x when

link y is also active. That is, SINR (x, y) := Hx,x/ (Hy,x +N ) where Hx,x is the

strength of the signal transmitted from the transmitter of link x to the receiver of link

x, Hy,x is the strength of the signal transmitted from the transmitter of link y to the

receiver of link x, andN is the strength of the noise. Then, the SINR communication

model specifies that y ∈ χ (x) if SINR (x, y) < T (x) or SINR (y, x) < T (y), where

T (x) and T (y) are thresholds that depend on the modulation schemes.

A schedule is a convex combination of assignments. Specifically, a schedule is

a set {αv : v ∈ V} where
P

v∈V αv ≤ 1 and αv ≥ 0. Thus, αv is the fraction of time

that assignment v is used. With this notation, the total data rate that the scheduleα

provides over link x is
P

v∈V αvRxvx. Finally, the throughput optimization problem

is

max
α,f

G (f) (3.2a)

subject to:X
{φ|x∈P (φ)}

fφ ≤
X
v∈V

αvR (v, x) for each link x (3.2b)

X
v∈V

αv ≤ 1 (3.2c)

0 ≤ αv for each v ∈ V, (3.2d)
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where f is the vector of flow rates. The function G is referred to as the through-

put metric. Several different throughput metrics are possible. In some cases, the

throughput metric is the network utility G (f) =
P

φ∈Φ Uφ (fφ), where Uφ is the

utility function for flow φ. Popular utility functions include Uφ (f) = wφ log (f)

[9, 66, 67] and Uφ (f) = wφf
1−γ/ (1− γ) [68], where wφ is the administrative

weight. Another widely used throughput metric is G (f) = minφ∈Φwφfφ [5]. This

work specifically focuses on the cases when G (f) =
P

φ∈Φwφ log (fφ) and G (f) =

minφ∈Φwφfφ. In the case that G (f) =
P

φ∈Φwφ log (fφ), the objective function is

continuously differentiable, concave, and increasing. The solvability of such prob-

lems is detailed in [69]. If G (f) = minφ∈Φwφfφ, then (3.2) can be written as a linear

programming problem, which is extensively studied in [70].

In theory, (3.2) is solvable. However, there is a significant computational

challenge in that if V is the set of all assignments, then the vector α has 2L elements.

Thus, the size of the space over which the optimization is performedmust be reduced.

This idea of considering a reduced space was considered in [5] and [6], however, the

space was constructed arbitrarily. In this work the space is constructed so that

the throughput found by optimizing over the reduced space is the same throughput

found by optimizing over the entire space.

3.3 Optimal Scheduling

3.3.1 Introduction

The objective of this section is to compute optimal schedules by optimizing

over a set of considered assignment V $V. The key questions are 1). is it possible

to reduce the size of V without impacting the solution, and 2). if so, how can the

set of considered assignments be constructed so that the value of (3.2) with the

reduced sized V is the same or near to the value when V =V? The answer to the

first question is provided next and the following subsections focus on the second

question.
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Theorem 1 There exists V with L assignments such that the solution to (3.2) is

the same as the solution to (3.2) when V = V.

Proof. The optimal average data rate over each link is a convex sum of the

links rates from different assignments, that is, the optimal bit-rate over link x isP
v∈V α

∗
vR (v, x), where α

∗ defines the optimal schedule. In other words, the set of

feasible link bit-rates is a convex set where the extreme points are some of the rows

of R. Obviously, the vector of optimal link rates is the vector
P

v∈V α
∗
vR (v, :) ∈

RL, the space of vectors with L elements. Due to Caratheodory’s Theorem (e.g.,

Theorem B.6 in [69]), a point within a convex hull in RL is specified by at most

L+ 1 extreme points. That is, there exists a set, V 0 with L+ 1 elements such thatX
v∈V

α∗vR (v, :) =
X
v∈V0

α0vR (v, :) ,

where α0 might be different set of weights from α∗. Hence, the optimal link bit-rates

found by optimizing over V, the set of all possible assignments, can be achieved by

only using the set of assignments V 0. Thus, the resulting utility is unchanged when

V 0 is used as opposed to V.

Now it is shown that V 0 can be selected so that V 0 has less than L + 1

elements. Suppose otherwise, that is, V 0 has exactly L + 1 elements, and V 0 is the

smallest set such that the optimal schedule is in Co ({R (v, :) : v ∈ V 0}), the convex

hull of {R (v, :) : v ∈ V 0}. Since the faces of Co ({R (v, :) : v ∈ V 0}) are defined by

no more than L extreme points, the assumption that the optimal bit-rates cannot

be specified by L points implies that the optimal bit-rates must be in the interior

of Co ({R (v, :) : v ∈ V 0}). That is, there is an open set that contains the optimal

point and this open set is in the interior of Co ({R (v, :) : v ∈ V 0}). For example,

letting r∗∗ be the vector of optimal bit-rates, the vector r∗∗ + εr∗∗ is also in the

interior of Co ({R (v, :) : v ∈ V 0}), where ε > 0 is small enough. Since r∗∗ is the

optimal vector of bit-rates over the interior of Co ({R (v, :) : v ∈ V 0}), the utility of
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r∗∗ must be higher than the utility of r∗∗ + εr∗∗. However, this is a contradiction

since the link bit-rates r∗∗+ εr∗∗ result in uniformly large flow rates than r∗∗, which

will increase the throughput. Hence, V 0 can be selected to have fewer than L + 1

elements.

The result, which follows from Caratheodory’s Theorem (e.g., Theorem B.6

in [69]), implies that the optimal schedule can be found by considering a set, V, that

is relatively small.

3.3.2 Basics

It is well known that Lagrange multiplier theory can be applied to (3.2) (e.g.,

see [69]). Specifically, associated with each link constraint (3.2b) is a Lagrange

multiplier denoted by µx, with µ being the vector of such multipliers. Similarly, as-

sociated with the constraint (3.2c) is a Lagrange multiplier denoted by λ. Employing

the economic interpretation of Lagrange multipliers, µx can be interpreted as the

price/bit of sending data over links x, or from the network’s point of view, µx is the

revenue that is collected for each bit that crosses link x. Under this interpretation,

the revenue generated by assignment v is

LX
x=1

R (v, x)µx.

The multiplier λ can be interpreted as the maximum revenue generated by any

assignment in V.

Theorem 2 Let G (f) =
P

φ∈Φwφ log (fφ) or G (f) = minφ∈Φwφfφ and let µx be

the Lagrange multiplier associated with constraint (3.2b) and let λ be the Lagrange

multiplier associated with constraint (3.2c), then

λ = max
v∈V

LX
x=1

R (v, x)µx. (3.3)
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Proof. The proofs here are based on the throughput metricG (f) =
P

φ∈Φwφ log (fφ)

and a single path routing. The extension to multipath and other throughput metrics

is straightforward.

The relevant Lagrange function is

L (f , α,µ, λ)=−
X
φ∈Φ

wφ log (fφ) + λ

ÃX
v∈V

αv − 1
!

+
LX

x=1

µx

⎛⎝ X
{φ:x∈P (φ)}

fφ −
X
v∈V

αvR (v, x)

⎞⎠ . (3.4)

After some manipulation, the dual function is found to be

q (µ, λ) = inf
f ,α≥0

−
X
φ∈Φ

wφ log (fφ)− λ (3.5)

+
LX

x=1

µx
X

{φ:x∈P (φ)}

fφ −
X
v∈V

αv

Ã
LX

x=1

R (v, x)µx − λ

!
.

We immediately note that if
PL

x=1R (v, x)µx − λ > 0 for some x, then q (µ, λ) =

−∞. Hence, we restrict the domain of q, to be such that
PL

x=1R (v, x)µx −

λ ≤ 0. On the other hand, when solving the dual problem, an objective is to

maximize q with respect to λ. It is equivalent to minimizing λ over the domainPL
x=1R (v, x)µx − λ ≤ 0. Thus,

λ∗ = max
v∈V

LX
x=1

R (v, x)µx, (3.6)

proving Proposition 2.

Typically, there are many assignments in V that generate revenue λ. The set

of such assignments is referred to as the set of active assignments and is denoted

V∗, i.e.,

V∗ (µ) :=
(
v :

LX
x=1

R (v, x)µx = max
v∈V

LX
x=1

R (v, x)µx

)
. (3.7)

From Theorem 1, the optimal schedule multiplexes between a set of no more than

L assignments. These assignments are contained in the set V∗.
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Theorem 3 If v /∈ V∗, then αv = 0.

Proof. Furthermore, for this λ, the
PL

x=1R (v, x)µx−λ < 0 for v /∈ V∗, thus, the

infimum in (3.5) must have αv = 0 for v /∈ V∗.

Since the revenue generated by active assignments is λ, the optimal schedule

also generates revenue λ. Specifically, let R∗x be the optimal data rate across link x,

that is

R∗x :=
X
v∈V

α∗vR (v, x) , (3.8)

where α∗ specifies the optimal schedule. Then, it can easily be shown that

λ =
LX

x=1

R∗xµx.

3.3.3 Evaluating Candidate Assignments

A brute force approach to constructing a good set of assignments is to start

with an arbitrary set of assignments, V, select an assignment v+ /∈ V, and evaluate

the resulting throughput with the set of assignments v+∪V. However, this approach

is computationally complex in that (3.2) must be repeatedly solved. Furthermore,

it is not clear if the utility of v+ is only apparent when it is added to V along

with a particular set of other assignments. Alternatively, the question of whether

an assignment v+ /∈ V will increase the throughput when the set of considered

assignments is changed from V to v+ ∪ V is answered by the following theorem.

Theorem 4 For the set of assignments V, let µ and λ be the Lagrange multipliers

associated with constraints (3.2b) and (3.2c) when (3.2) is solved with this V. Now

consider an assignment v+ /∈ V, the throughput provided by v+ ∪ V is greater than

that provided by V if and only if

LX
x=1

R
¡
v+, x

¢
µx − λ > 0. (3.9)
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Proof. We slightly modify (3.2) to

minG (f)

subject to:
X

{φ:x∈P (φ)}

fφ −
X
v∈V

αvR (v, x) ≤ ρxX
v∈V

αv − 1 = A,

so (3.2) is the case where ρ = 0 and A = 0. We will denote the value of the optimal

solution of the above problem as G∗ (ρ, A). From sensitivity analysis (e.g., [69]), we

have

µ∗x =
∂G∗ (ρ,A)

∂ρx
(3.10)

λ∗ =
∂G∗ (ρ,A)

∂A
. (3.11)

Equation (3.10), implies that if the amount of bit-rate that is applied to link x is

increased by a small amount ε, then the total utility will be increased by µ∗xε. It is

critical to note that in this analysis, the bit-rate applied to link x does not come at

the expense of bit-rates of other links.

Now consider the multiplier, λ∗. The constraint
P

v∈V αv = 1 + A can be

interpreted as allowing the total bandwidth of size 1 + A to be shared among all

assignments. Thus, if the bandwidth is increased from size 1 to size 1 + ε, then the

utility will be increased by λε. Similarly, if the bandwidth is decreased by ε, then

the utility will be decreased by λε.

While the analysis above assumed that the extra bandwidth is allocated

to link x without impacting the bit-rate of the other links, we now consider the

more relevant problem where this extra assignment comes at the expense of other

links. Specifically, if we allocate assignment v+ with ε of the bandwidth, then the

total bandwidth allocated to the other assignments must be decreased by ε. In

particular, let V 0 = {v1, ...vN} and when optimizing over the set of assignments V 0,
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let the associated optimal bandwidth allocated to vi be of size α∗i , where, of course,PN
i=1 α

∗
i = 1. Now in order to allocate bandwidth ε to assignment v+, we adjust

the allocation to α+i = (1− ε)α∗i , and hence the assignments {v+,v1,v2, ...,vN} are

allocated bandwidths of width {ε, (1− ε)α∗1, (1− ε)α∗2, ..., (1− ε)α∗N}, respectively.

Based on the discussion above, the change in utility is

ε

Ã
LX

x=1

R
¡
v+, x

¢
µ∗x − λ

!
, (3.12)

which is positive if (3.9) holds.

Corollary 5 If Lagrange multipliers that result from optimizing over V are such

that there does not exist an assignment that satisfies (3.9), then the schedule found

by optimizing over V is optimal.

Theorem 4 provides the main tool for constructing a good set of assignments.

Invoking an economic interpretation of the Lagrange multipliers, Theorem 4 implies

that an assignment v+ will increase the utility if it generates more revenue per

second than any other assignments in the set V.

Figure 3.1 provides a geometric view of Theorem 4. Under a slightly different

problem formulation, [5] considered arbitrarily adding assignments to the set of

considered assignments. Theorem 4 provides a more sophisticated technique to

decide whether assignments should be added.

3.3.4 Algorithm to Maximize the Throughput

Based on Theorem 4, Algorithm 1 can be used to iteratively add assignments

to V such that the added assignment satisfies (3.9). The intuition behind this

algorithm is to compute the values of the Lagrange multipliers by solving (3.2) with

V = V (n), where V (n) is the set of assignments at the nth iteration. With these

multipliers a new assignment is found that satisfies (3.9). If no such assignment

exists, then Corollary 5 implies that the schedule is optimal. If an assignment
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Figure 3.1: A geometric view of the optimal scheduling problem. The above shows
the region of bit-rates, where we assume that there are only two links,
and hence the space of bit-rates is the plane. The Lagrange multipliers
found from optimizing over the set of considered assignments divide
the space of bit-rates, r, into two regions, according to whether rTµ <
λ or rTµ > λ. The active assignments and the schedule found by
optimizing over the considered assignments are on the boundary of
this division. An assignment will only improve the performance if
rTµ > λ. The goal is to find the two desired assignments. The
optimal schedule is a convex combination of these assignments.
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Algorithm 1 Computing an Optimal Schedule
1: Set n = 0, then select an initial set of assignments V(0), a empty assignment
v(0), and a level of accuracy ρ ≥ 0.

2: repeat
3: Set V (n+ 1) = V (n) ∪ v(n), and set n = n+ 1.
4: Solve (3.2) with V = V(n), and, hence, compute the flow rates f(n) and the

Lagrange multiplies µ(n) and λ(n) associated with constraints (3.2b) and
(3.2c), respectively.

5: Search for an assignment v(n) such that

v(n) = argmax
v∈V

LX
x=1

R (v, x)µx (n)− λ(n). (3.13)

6: until
7: case G(f) = minφ∈Φfφ :

L
x=1R(v(n),x)µx(n)−λ(n)

G(f(n))
< ρ

8: case G(f) =
P

φ∈Φ log(fφ) :PL
x=1R (v(n), x)µx (n)− λ(n) < L log(1 + ρ)

that satisfies (3.9) is found, then we set to V (n+ 1) the union of V (n) and this

newly found assignment. With this new set of assignments, (3.2) is resolved and

an improvement of the resulting throughput is guaranteed by Theorem 4. This

process is repeated until no new assignments can be found (in which case the optimal

schedule has been found) or until the current solution is close enough to optimal.

The first step of Algorithm 1 requires an initial set of assignments, V (0), which is

given in Section 5.1. Also, Figure 3.2 shows the flow chart of Algorithm 1.

The following indicates the convergence of Algorithm 1.

Theorem 6 Let {(f (n) ,α (n))|n = 1, 2, ...} be the sequence of solutions given by

Algorithm 1 with ρ = 0. Then limn→∞ (f (n) ,α (n)) = (f (∞) ,α (∞)), the optimal

solution of (3.2) when V =V.
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Given the initial set of assignments V

Solve Optimization over V

Search for New Assignment v+

v+= argmax ∑xR(v, x) µx

µx and λV= v+ ∪ V

Optimal Schedule

∑xR(v+, x) µx <=λ

v

∑xR(v+, x) µx >λ

Given the initial set of assignments V

Solve Optimization over V

Search for New Assignment v+

v+= argmax ∑xR(v, x) µx

µx and λV= v+ ∪ V

Optimal Schedule

∑xR(v+, x) µx <=λ

v

∑xR(v+, x) µx >λ

Figure 3.2: Algorithm for optimal scheduling

Theorem 7 If G (f) = minφ∈Φ fφ, then (G (f (∞))−G (f (n+ 1))) /(G (f (∞)) −

G (f (n))) < δ for some constant 0 < δ < 1, that is, G (f (n)) converges to G (f (∞))

geometrically fast.

Theorem 8 Let A ∈ {0, 1}|Φ|×L with A (φ, x) = 1 if x ∈ P (φ) and A (φ, x) = 0

otherwise. Suppose that the null space of A is empty. Then Algorithm 1 with ρ = 0

converges arithmetically when G (f) =
P

φ∈Φ log (fφ), that is, G (f (∞))−G (f (n)) ≤

a/n for some a > 0.

The proofs of these three theorems are in Section 3.5. The condition that A

has an empty null space is satisfied if no two links have the exact same set of flows

crossing them. In the case that the same set of flows do cross two different links, it

is often the case that only one of these links will be a bottleneck and hence µx will

be zero for the non-bottleneck link. Under this restriction, it is straightforward to

show that the conclusion of Theorem 8 holds.
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Theorem 9 Suppose that Algorithm 1 terminates after n∗ iterations with ρ > 0.

If G (f) = minφ∈Φ fφ, then
G(f(∞))−G(f(n∗))

G(f(∞)) < ρ. Whereas, if G (f) =
P

φ∈Φ log (fφ),

then G (f (∞))−G (f (n∗)) =
P

φ∈Φ log (fφ (∞) /fφ (n∗)) < L log (1 + ρ).

This theorem is proved in Section 3.5. In our computational experiments

we found that Algorithm 1 suffers from numerical issues that reduce the rate of

convergence when n and L are large. It appears that solving (3.2) when G (f) =P
φ∈Φ log (fφ) is the source of these numerical problems. Thus, when L is large and

G (f) =
P

φ∈Φ log (fφ), we recommend ρ > 0. Specifically, when L ≤ 512, we have

found that ρ = 0.05 works well, but for L > 512, we use ρ = 0.15. It is hoped that

improvements in solving (3.2) for large L will allow smaller values of ρ.

3.4 Summary

Optimal scheduling can be modeled as an optimization problem and the

optimization space is exponential in the number of links which is 2L where L is

the number of links. In fact, it has been proved that the optimal schedule is the

linear combination of L assignments. This chapter presents an iterative approach

to find these special assignments. The approach is to start with a particular set of

assignments, V, select an assignment v+ /∈ V, and evaluate the resulting utility with

the set of assignments v+ ∪ V. Specifically, at each iteration, a linear test (3.9) is

provided to efficiently determine whether an assignment should be added to the set

of considered assignments.

Also, this chapter shows the iterative approach has good convergence prop-

erty. When G (f) =
P

φ∈Φwφ log (fφ), the algorithm achieves algebraic convergence.

When G (f) = minφ∈Φwφfφ, the algorithm achieves geometrical convergence.

3.5 Appendix

To simplify the notation, only a single path routing is considered. The ex-

tension to multipath and other throughput metrics is straightforward.
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Algorithm 2
1: Set k = 0, then select an initial set of assignments V(0) and a empty assignment
v(0).

2: repeat
3: Set V(k + 1) = V(k) ∪ v(k), and set k = k + 1.
4: Find µ(k) and λ(k), the solutions to (3.14) for V = V(k).
5: Find v(k) = argmaxv∈V

PL
x=1 µx (k)R (v, x)− λ(k).

6: until
PL

x=1 µx (k)R (v(k))− λ(k) ≤ 0

3.5.1 Proof of Theorem 6

Consider the problem

max g (µ, λ) (3.14)

subject to
LX

x=1

R (v, x)µx ≤ λ for all v ∈ V

h (µ) = 0

and Algorithm 2 for solving this problem with V =V.

This problem is the dual of (3.2) for either objective function by correctly

defining g and h. Specifically, if g (µ, λ) = λ and h (µ) =
P

x µxβx − 1, then (3.14)

is the dual of (3.2) when G (f) = minφ∈Φ fφ. On the other hand, if g (µ, λ) =

−
P

φ∈Φ log
³

1

x∈P (φ) µx

´
+
PL

x=1 µx
P

{φ:x∈P (φ)}
1

y∈P (φ) µy
− λ and h (µ) ≡ 0, then

(3.14) is the dual of (3.2) with G (f) =
P

φ∈Φ log (fφ). Thus the following theorem

applies to both cases.

Specifically, cutting plane method is deployed to solve the dual problem and

Figure 3.3 shows the idea of Algorithm 2. The ellipse is the domain defined by

all assignments V, and the triangle is the domain defined by the current set of

assignments V. First, find the optimal (µ, λ) by solving the dual problem in the

current set V, and project the optimal to the ellipse domain. Therefore, a new

assignment is added to the current set of assignments V. Then, find the optimal

(µ, λ) in V again. We keep on doing this until the optimal is found in the ellipse

domain, which denotes the optimal of the dual problem for V.
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Figure 3.3: Cutting plane method for dual problem

Theorem 10 The sequence {(µ (n) , λ (n))|n = 0, 1, ...} given by Algorithm 2 con-

verges to the optimal solution. Thus, Algorithm 1 converges to the optimal solution.

Lemma 11 Assume that G (f) =
P

φ∈Φ log (fφ). Then the set {(µ (n) , λ (n)) |n =

1, 2, ...} is a bounded set.

Proof. We first get a lower bound on the optimal value of G (f). Let vx be

the assignment where link x is active individually. Set f = minφminx∈P (φ)
R(vx,x)

βx
.

Then G =
P

φ∈Φ log
¡
f
¢
is a lower bound on G (f (∞)). Let r∗ be the maximum

data rate over any link. Then G =
P

φ∈Φ log (r
∗) is an upper bound on G (f (∞)).

Thus, for a flow θ, we must have that G < log (f∗θ ) +
P

φ∈Φ\θ log (r
∗). Hence f∗θ ≥

exp
³
G−

P
φ∈Φ\θ log (r

∗)
´
. Since f∗θ = 1/

P
x∈P (θ) µ

∗
x and µ∗x ≥ 0, we have µ∗x <

1/ exp
³
G−

P
φ∈Φ\θ log (r

∗)
´
. Moreover, since

PL
x=1R (v, x)µ

∗
x = λ∗, we must have

that λ∗ ≤ Lr∗/ exp
³
G−

P
φ∈Φ\θ log (r

∗)
´
.

Lemma 12 Assume that G (f) = minφΦ (fφ). Then the set {(µ (n) , λ (n)) |n =

1, 2, ...} is a bounded set.

Proof. Let
PL

x=1 µ
∗
xβx = F ∗ ≤ r∗ where r∗ is the maximum data rate over any

link. Thus, µx ≤ r∗/βx.Also, λ
∗ ≤ r∗.
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Proof. [Proof of Theorem 10] Since {(µ (n) , λ (n)) : n = 1, 2, ...} is a bounded se-

quence, there exists a convergent subsequence. Thus, assume that {(µ (nj) , λ (nj)) :

j = 1, 2, ...} is such a sequence and limj→∞ (µ (nj) , λ (nj)) = (µ0, λ0). Define

a sequence of sets of assignments V (nj) := V (0) ∪
nj[
i=1

v (i). We will show thatPL
x=1R (v, x)µ

0
x < λ0 for v ∈ V (n). To this end define u (µ, λ) :=

maxv∈V
PL

x=1R (v, x)µx − λ. It is straightforward to check that u is a contin-

uous function. Also, u (µ (nj) , λ (nj)) =
PL

x=1R (v (nj) , x)µx (nj) − λ (nj), and

since V (nj) is increasing in j,
PL

x=1R (v, x)µ
0
x − λ0 ≤ 0 for all v ∈ V (nj) for all j.

Therefore, the following string holds

u ((µ0, λ0))

= u ((µ (nj) , λ (nj))) + u ((µ0, λ0))

−u ((µ (nj) , λ (nj)))

=
LX

x=1

R (v (nj) , x)µx (nj)− λ (nj)

+ (u ((µ0, λ0))− u ((µ (nj) , λ (nj))))

≤
Ã

LX
x=1

R (v (nj) , x)µx (nj)− λ (nj)

!

−
Ã

LX
x=1

R (v (nj) , x)µ
0
x − λ0

!
+(u ((µ0, λ0))− u ((µ (nj) , λ (nj))))

=

Ã
LX

x=1

R (v (nj) , x) (µx (nj)− µ0x)− (λ (nj)− λ0)

!
+(u ((µ0, λ0))− u ((µ (nj) , λ (nj)))) .

Since the entries of R are bounded and since u is continuous, the right-hand side

converges to zero as j →∞. Therefore, u ((µ0, λ0)) ≤ 0.

Note that g ((µ (nj) , λ (nj))) is a nonincreasing function (since more con-

straints are added at each iteration) and g ((µ (nj) , λ (nj))) ≥ g ((µ (∞) , λ (∞))),
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where (µ (∞) , λ (∞)) is the solution to (3.14) for V = V. Since g is continu-

ous, limj→∞ g ((µ (nj) , λ (nj))) = g ((µ0, λ0)) ≤ g ((µ (∞) , λ (∞))). Thus (µ0, λ0)

solves (3.14) for V = V. And hence, (µ0, λ0) solves the dual of (3.14), which

has a unique solution, hence (µ (∞) , λ (∞)) = (µ0, λ0). Thus, all subsequences

of {(µ (n) , λ (n)) : j = 1, 2, ...} converge to (µ0, λ0). Hence, limn→∞ (µ (n) , λ (n)) =

(µ0, λ0). It is straightforward to show that if {(f (n) ,α (n)) : n = 1, 2, ...} is the se-

quence of solutions to the primal problems via Algorithm 1, then

limn→∞ (f (n) ,α (n)) = (f (∞) ,α (∞)), which is the optimal solution to the pri-

mal problem.

3.5.2 Proof of Theorems 7 and 9

Define ∆(n) = argmaxv∈V̄ R (v, :)µ (n) − λ(n). Define f(n) to be the vec-

tor of flow rates found during the nth iteration of Algorithm 1 and let f(∞) :=

limn→∞f(n). Thus G (f (n)) to be the optimal value of (3.2) after the nth iteration.

And letG (f (∞)) be the solution to the full problem. Define∆λn = λ (n+ 1)−λ (n)

and ∆µ (n) = µ (n+ 1) − µ (n). Let v (n) = argmaxv∈V̄ R (v, :)µ (n). That is,

v (n) is the assignment added at the nth iteration.

Theorem 13 Let G (f) =
P

φ∈Φ log (fφ), then for f (n) found by Algorithm 1,

G (f (∞))−G (f (n)) ≤ ∆ (n).

Proof. The dual of (3.2) is

maxmin
f
−
X
φ

log (fφ) +
X
x

µx
X

{φ:x∈P (φ)}

fφ − λ

subject to
X
x

R (v, x)µx ≤ λ for all v ∈ V̄.

Then as above, ((µ (n) ,maxv∈V̄ R (v, :)µ (n))) is a feasible (but not optimal) solu-

tion to the dual of the full problem. Since there is no gap between the primal and
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dual optimal,
P

x µx
P

{φ:x∈P (φ)} fφ is equal to λ(n). After substitute the feasible

solution to the cost function, we get

−G (f (n)) + λ (n)−max
v∈V̄

R (v, :)µ (n) .

Nonetheless, −G (f (∞)) is the optimal of the primal problem. Therefore,

−G (f (∞)) ≥ −G (f (n)) + λ (n)−max
v∈V̄

R (v, :)µ (n) .

Then,

G (f (∞))−G (f (n)) ≤ max
v∈V̄

R (v, :)µ (n)− λ (n) .

To proof the above for the case when G (f) = minφ∈Φ fφ we rewrite (3.2) to

min−F (3.15)

subject to:
X
v∈V

αvR (v, x) ≥ βxFX
v∈V

αv ≤ 1

where βx is the number of flows that pass through link x divided by the bit-rate of

link x. Thus, with normalization, R (v, x) ∈ {0, 1}.

Theorem 14 Let G (f) = minφ∈Φ fφ, then for f (n) found by Algorithm 1,

G (f (∞))−G (f (n)) ≤ ∆ (n)

Proof. The dual of (3.2) with V = V̄ is

minλ

−R (v, :)µ ≥ −λ for all v ∈ V̄X
x

µxβx ≥ 1.
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Note that (µ (n) ,maxv∈V̄ R (v, :)µ (n)) is a feasible (but not optimal) solution to the

dual of the full problem. Thus, G (f (∞)) ≤ maxv∈V̄ R (v, :)µ (n) and G (f (∞)) −

G (f (n)) ≤ maxv∈V̄ R (v, :)µ (n)−G (f (n)) = ∆ (n).

Theorem 9 follows from Theorems 13 and 14. We now focus on proving

Theorem 7. To this end, the following lemmas are proved.

Lemma 15 ∆λ (n) ≥ R (v, :)∆µ (n) for all v 6= v (n) and v ∈ V∗ (n+ 1)

Proof. From the identity, λ (n) = maxv∈V(n)R (v, :)µ (n) = R (v, :)µ (n) for

v ∈ V∗ (n), we have for v ∈ V∗ (n+ 1) and v 6= v (n)

λ (n+ 1)− λ (n)

= R (v, :)µ (n+ 1)− max
v∈V(n)

R (v, :)µ (n)

≥ R (v, :)µ (n+ 1)−R (v, :)µ (n) .

Lemma 16 ∆λ (n) = R (v (n) , :)∆µ (n) +∆ (n)

Proof. The newly added assignment, v (n), is always an active assignment

in the schedule found in the (n+ 1)th iteration, i.e., v (n) ∈ V∗ (n+ 1). Thus,

λ (n+ 1) = R (v (n) , :)µ (n+ 1). From the definition of ∆ (n), we have −λ (n) =

−R (v (n) , :)µ (n) + ∆ (n). Thus, λ (n+ 1) − λ (n) = R (v (n) , :)µ (n+ 1)

−R (v (n) , :)µ (n) +∆ (n).

Lemma 17 βT∆µ (n) = 0.

Proof. The Lagrangian for (3.15) is

L (µ, λ,α, F ) = −F +
X
x

µx

Ã
βxF −

X
v

αvR (v, x)

!

+λ

ÃX
v

αv − 1
!
.
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Since F appears linearly, for the optimal value of µ we must have that −1 +P
x βxµx = 0. Thus, for all n, β

Tµ (n) = 1, and hence βT∆µ ( n) = 0.

Note that the set of active assignments V∗ (n+ 1) and the corresponding

matrix of data-rates must be schedulable in the sense that sufficient data must flow

on each link. This gives rise to following condition on V∗ (n+ 1) and R.

There exists a vector α with
P

v∈V∗(n+1) αv = 1 and αv > 0 for all v ∈

V∗ (n+ 1) such that there exists a t > 0 such that

αR (:, x) ≥ tβx for all x. (3.16)

Lemma 18 There exists a q > 0 that is independent of V∗ (n+ 1) such that

maxv∈V∗(n+1)\v(n)R (v, :)∆µ (n) ≥ −qR (v (n) , :)∆µ (n).

Proof. Multiplying both sides of (3.16) by ∆µx (n) and summing results in

LX
x=1

∆µx (n)
X

v∈V∗(n+1)

αvR (v, x) ≥ t
LX

x=1

βx∆µx (n)

and from Lemma 17, we have

X
v∈V∗(n+1)\v(n)

αv
X
x

∆µx (n)R (v, x) + αv(n)∆µx (n)R (v (n) , x) ≥ 0.

Thus,

max
v∈V∗(n+1)\v(n)

R (v, :)∆µ (n) ≥ −q (R,β)R (v (n) , x)∆µx (n)

where q (R,β) > 0 is a constant that depends on the vector α given by Condition

3.5.2, and hence depends on the matrix of active assignments V∗ (n+ 1) and the

vector β. The set of active assignments is in the set V(β, L) where

V (β, L) :=
n
{0, 1}s×L | s ≤ L, Condition 3.5.2 holds

o
,
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where s is the number of active assignments, and s ≤ L. Clearly, V(β, L) is a com-

pact set (actually, it is a finite set). Hence, there exists a q := minR∈V(β,L) q (R,β)

where q > 0 and thus maxv∈V∗(n+1)\v(n)R (v, :)∆µ (n) ≥ −q∆µx (n)R (v (n) , x) for

any V∗ (n+ 1) ∈V(β,L).

Lemma 19 ∆λ (n) ≥ δ∆ (n) for some δ > 0.

Proof. From Lemmas 15, 16, and 18

∆λ (n) ≥ max
v∈V∗(n+1)\v(n)

R (v, :)∆µ (n)

≥ −qR (v (n) , :)∆µ (n)

= q (∆ (n)−∆λ (n))

∆λ (n) (1 + q) ≥ q∆ (n)

∆λ (n) ≥ q

q + 1
∆ (n) .

Proof. [Proof of Theorem 7] Since there is no duality gap, λ (n) = G (f (n)). Thus,

from Lemma 19
G (f (n+ 1))−G (f (n))

∆ (n)
≥ δ.

On the other hand, by Theorem 14, G (f (∞)) − G (f (n)) ≤ ∆ (n). Therefore, we

have

G (f (n+ 1))−G (f (n))

G (f (∞))−G (f (n))
≥ δ

(G (f (∞))−G (f (n)))− (G (f (∞))−G (f (n+ 1)))

G (f (∞))−G (f (n))
≥ δ

1− (G (f (∞))−G (f (n+ 1)))

G (f (∞))−G (f (n))
≥ δ

(G (f (∞))−G (f (n+ 1)))

G (f (∞))−G (f (n))
≤ 1− δ < 1.
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Note that in practice, numerical errors limit the accuracy of the solutions.

These errors result in G (f (∞)) − G (f (n+ 1)) approaching zero slowly for large

n. Thus, if ∆Threshold is very small, it may take many iterations before ∆ (n) <

∆Threshold. Thus, ∆Threshold should not be to small. While further research is re-

quired to understand the source and impact of numerical errors, we suspect that

errors in channel gain measurements and node synchronization result in more sig-

nificant reduction in actual throughput than using a large value of ∆Threshold.

3.5.3 Proof of Theorem 8

Lemma 20 kµ (n+ 1)− µ (n)k ≥ δ |λ (n+ 1)− λ (n)| for some δ > 0.

Proof. Recall that λ (n) = maxv∈V(n)R (v, :)µ (n) and for v ∈ V∗ (n) we have

λ (n) = R (v, :)µ (n). Let v0 ∈ V∗ (n+ 1) ∩ V (n). Then

R (v0, :)µ (n+ 1)−R (v0, :)µ (n) ≥ λ (n+ 1)− λ (n) .

Since R (v0, x) ∈ {0, 1}, there exists an x such that µx (n+ 1)− µx (n) ≥
1
L
(λ (n+ 1)− λ (n)), and kµ (n+ 1)− µ (n)k ≥ 1

L
|(λ (n+ 1)− λ (n))|.

Lemma 21 Let A ∈ {0, 1}|Φ|×L with A (φ, x) = 1 if x ∈ P (φ) and A (φ, x) = 0

otherwise. Suppose that the null space of A is empty. Then A (φ, :)µ = 1/fφ and

there exists a δ > 0 such that kf (n)− f (n+ 1)k ≥ δ kµ (n)− µ (n+ 1)k.

Proof. Since the null space of A is empty, all the singular values of A are

nonzero. Thus,
µP

φ∈Φ

³
1

fφ(k)
− 1

fφ(k+1)

´2¶1/2
≥ 1

σ
kµ (k)− µ (k + 1)k, where σ is

the smallest singular value of A.

Recall that the proof of Lemma 11 showed that there exists a f such that

fφ (n) ≥ f for all n and φ. Direct calculation shows that |fφ (n)− fφ (n+ 1)| ≥

f2
¯̄̄

1
fφ(n)

− 1
fφ(n+1)

¯̄̄
. Thus, kf (n)− f (n+ 1)k ≥ f2

σ
kµ (k)− µ (k + 1)k.
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Combining the previous lemmas we get the following.

Lemma 22 If the assumption of Lemma 21 holds, then

kf (n)− f (n+ 1)k ≥ δ k(µ (n+ 1) , λ (n+ 1))− (µ (n) , λ (n))k for some δ ≥ 0.

Proof. [Proof of Theorem 8] 1Define u (µ, λ) := maxv∈V
PL

x=1R (v, x)µx − λ. Let

(µ (0) , λ (0)) be the multipliers that result from solving (3.2) with V = {v : vx = 1

for exact one x}. Let λo = maxv∈V
PL

x=1R (v, x)µx (0). Then, u ((µ (0) , 2λo)) =

−λo. Thus, for each n, there exists a γ (n) ∈ [0, 1] such that

0 = u (γ (n) (µ (n) , λ (n)) + (1− γ (n)) (µ (0) , 2λo)) . (3.17)

From (3.17),

0 = u (γ (n) (µ (n) , λ (n)) + (1− γ (n)) (µ (0) , 2λo))

≤ γ (n)u (µ (n) , λ (n)) + (1− γ (n))u (µ (0) , 2λo) ,

where the inequality is implied by the convexity of u. Therefore,

u (µ (n) , λ (n)) ≥ −(1− γ (n))

γ (n)
u (µ (0) , 2λo) .

Since v (n) ∈ V∗ (n+ 1), we have R (v (n) , :)µ (n+ 1) − λ (n+ 1) = 0. Also,

u ((µ (n) , λ (n))) = R (v (n) , :)µ (n+ 1)− λ (n+ 1). Therefore,

−(1− γ (n))

γ (n)
u (µ (0) , 2λo)

≤ u (µ (n) , λ (n))

= R (v (n) , :)µ (n)− λ (n)

− (R (v (n) , :)µ (n+ 1)− λ (n+ 1))

= R (v (n) , :) (µ (n)− µ (n+ 1))− (λ (n)− λ (n+ 1))

≤ r∗ k(µ (n+ 1) , λ (n+ 1))− (µ (n) , λ (n))k ,

1 This proof is based on a proof in [116].
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where r∗ is the highest data rate across any link, and hence R (v, x) ≤ r∗. From the

above and Lemma 22 we have

kf (n)− f (n+ 1)k ≥ −δ (1− γ (n))

γ (n)
u (µ (0) , 2λo)

≥ −δ (1− γ (n))u (µ (0) , 2λo)

for some δ > 0. Or

(1− γ (n)) ≤ kf (n)− f (n+ 1)k−δu (µ (0) , 2λo)
. (3.18)

Corresponding to the point (µ (0) , 2λo), define flow rates f̃ where f̃φ =

1

x∈P (φ) µx(0)
. Clearly, this set of data rates is suboptimal but feasible. Similarly,

f (n) is suboptimal but feasible. Hence, γ (n) f (n)+ (1− γ (n)) f is suboptimal but

feasible. Therefore,

−G (f (∞)) ≤ −G
³
γ (n) f (n) + (1− γ (n)) f̃

´
,

where f (∞) is the vector of optimal flow rates. Then

(−G (f (∞)))− (−G (f (n))) (3.19)

≤
³
−G

³
γ (n) f (n) + (1− γ (n)) f̃

´´
− (−G (f (n)))

≤ K
°°°γ (n) f (n) + (1− γ (n)) f̃ − f (n)

°°°
= K (1− γ (n))

°°°f (n)− f̃°°° ,
where K = maxf∈{f|f≤fφ≤r∗} k∇G (f)k and ∇G (f) is the gradient of G at f and f

is the lower bound on the flow rates given in Lemma 11.

Combining (3.18) and (3.19) yields,

(−G (f (∞)))− (−G (f (n))) (3.20)

≤ K

−δu (µ (0) , 2λo)
kf (n)− f (n+ 1)k

°°°f (n)− f̃°°°
Define D (n) := (−G (f (∞)))− (−G (f (n))). Thus, (3.20) implies

D (n) ≤ K1 kf (n)− f (n+ 1)k , (3.21)
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where K1 =
K

−δu(µ(0),2λo) max{f|f≤fφ≤r∗}
°°°f − f̃°°°.

On the other hand, over the domain
©
f
¯̄
f ≤ fφ ≤ r∗

ª
,
P

φ∈Φ log (fφ) is a

strongly convex function (see Proposition B.5 in [69]). Thus,

D (n)−D (n+ 1) (3.22)

= (−G (f (n+ 1)))− (−G (f (n)))

≥ ρ kf (n)− f (n+ 1)k2

for some ρ > 0.

From (3.21) and (3.22),

D (n)2 ≤ K2
1 kf (n)− f (n+ 1)k

2 ≤ K2
1

ρ
(D (n)−D (n+ 1)) ,

or

D (n+ 1) ≤ D (n)− ρ

K2
1

D (n)2 .

As shown in [117],

1

D (n+ 1)
≥ 1

D (n)

1

1− ρ
K2
1
D (n)

=
1

D (n)

∞X
i=0

µ
ρ

K2
1

D (n)

¶i

≥ 1

D (n)

µ
1 +

ρ

K2
1

D (n)

¶
=

1

D (n)
+

ρ

K2
1

.

Using induction, we have,

1

D (n)
≥ 1

D (0)
+ n

ρ

K2
1

,

or

D (n) ≤ 1
1

D(0)
+ n ρ

K2
1

≤ 1

n ρ
K2
1

.

Thus,

G (f (∞))−G (f (n)) ≤ K2
1

ρ

1

n
.
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Chapter 4

COMMUNICATION MODELS

The throughput of a network depends on the capabilities of the MAC and

physical layer. However, including a detailed model of communication can compli-

cate the development and analysis of computation schemes, for example, the re-

sulting scheme might be computational intractable. Hence, simplifications are often

made. The communication models found in the literature can be divided into two

classes, namely protocol communication models and physical communication models.

Several examples of each type of model are discussed in this chapter. Specifically,

precise definitions of the physical models and protocol models are provided in Sec-

tion 4.1 and Section 4.2 respectively.

4.1 Physical Communication Models

4.1.1 Shannon Capacity

Shannon’s Theorem specifies that the maximum possible data rate across a

link is

BW × log2 (1 + SINR)

where BW is the bandwidth of the channel and the SINR is the ratio of the signal

power to the power of the interference and noise1. If links a, b, ..., and c are

1 It is assumed that the noise and interference are additive white Gaussian nose
(AWGN).
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transmitting, then the SINR at the receiver of link x is

SINRr
a,b,...,c (x) :=

Ht,r
x,x

Ht,r
a,x +Ht,r

b,x + · · ·+Ht,r
c,x +N0

,

where N0 is the noise power and Ht,r
x,x is the normalized channel gain across link

x. That is Ht,r
x,x is the signal strength at the receiver of link x due to the data

transmission by the transmitter of link x. Similarly, Ht,r
a,x is the signal strength at

the receiver of link x due to the data transmission by the transmitter of link a. Note

that the transmission power is embedded into Ht,r
a,x. Thus, if the channel gain from

the transmitter of link a to the receiver of link x is ha,x, and link a transmits with

power pa, thenHt,r
a,x = ha,xpa. If a link can transmit at different powers, we represent

that link with multiple distinct links between the same transmitter and receiver. By

convention, Ht,r
x,y = ∞ if x’s transmitter is y’s receiver. Hence, in this case, if data

is transmitted across link x, then it is not possible to receive any data transmitted

across link y.

Considering the above, the maximum data rate achievable across link x when

links a,b,..., and c are transmitting is given by

Ra,b,...,c (x) = BW × log2(1 + SINRr
a,b,...,c (x))

Of course, here, the Shannon capacity does not account for any fixed overhead (e.g.,

801.11’s SIFS and preamble).

4.1.2 802.11 Style Model

The Shannon capacity cannot be achieved in practice. Today’s physical lay-

ers, such as 802.11a support a set of modulation and coding schemes. Each scheme

coincides with a particular relationship between SINR and bit-error probability2. We

assume thatM modulation schemes provide bit-rates BR (1), BR (2) , · · · , BR (M).

2 The impact of delay spread and Doppler spread are ignored.
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The probability of successful packet transmission with the mth modulation scheme

is denoted by PSPZ (m,SINR), where the subscript Z denotes the packet size.

Hence, if links a, b, · · · , c are transmitting, then the probability of successful trans-

mission of a packet of length Z across link x with modulation scheme m is denoted

by PSPZ

¡
m,SINRr

a,b,...,c (x)
¢
.

4.1.2.1 Without ACKs

Here it is assumed that ACKs are not used. Rather, the modulation scheme

is selected so that losses occur rather infrequently. The resulting data rate when

links a, b, .., and c are also transmitting is denote by Ra,b,...,c (x) and is given by

Ra,b,...,c (x) = max
m

Z × 8³
Z×8

BR(m)
+ Foh

´ × PSPZ

¡
m,SINRr

a,b,...,c (x)
¢

where Foh is the fixed overhead that represents time spacings such as SIFS and radio

synchronization.

4.1.2.2 With Unsynchronized ACKs

The average number of transmissions until the data is successfully delivered

across the link is 1/PSP . Thus, the effective data rate is approximately BR×PSP

where it is assumed that exponential back-off is disabled. We consider two ways

to ACK packets. In the first case, it is assumed that the ACK is transmitted just

after the data packet is transmitted. This scheme is nearly the same as 802.11.

One important difference between this case and 802.11 is that carrier sensing, RTS

and CTS are not used. In this case, ACKs can be transmitted at any time; hence

interference is due to both data and ACK transmissions. Thus, the SINR at the

receiver of link x is

SINRr,UA
a,b,...,c (x) =

Ht,r
x,x

max
¡
Ht,r

a,x, H
r,r
a,x

¢
+ ...+max

¡
Ht,r

c,x,H
r,r
c,x

¢
+N0
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where Hr,r
a,x is the signal strength at the receiver of link x due to an ACK trans-

mission by the receiver of link a. Since a link cannot simultaneously transmit data

and ACKs, max
¡
Ht,r

a,x, H
r,r
a,x

¢
is the worst case interference due to the data or ACK

transmission across link a.

Similarly, the SINR experienced at the transmitter of link x when receiving

the ACK packets is

SINRt,UA
a,b,...,c (x) =

Hr,t
x,x

max
¡
Ht,t

a,x, H
r,t
a,x

¢
+ ...+max

¡
Ht,t

c,x,H
r,t
c,x

¢
+N0

where Ht,t
a,x and H

r,t
a,x are the signal strengths at the transmitter of link x due to the

data transmission and the ACK transmission by link a respectively.

Finally, if unsynchronized ACKs are used, links a, b, ..., and c are trans-

mitting, and the data packets are size Z, then the effective data rate across link x

is

Ra,b,...,c (x) = max
m,n

Z × 8³
Z×8

BR(m)
+ 14×8

BR(n)
+ 2Foh

´
×PSPZ

³
m,SINRr,UA

a,b,...,c (x)
´

×PSP14
³
n, SINRt,UA

a,b,...,c (x)
´

where it is assumed that ACKs have 14 B, as is the case in 802.11. Closely related

schemes to select the modulation may fix the ACK modulation scheme to be the

slowest bit-rate (i.e., n = 1) or to require the data and ACK to use the same bit-rate

(i.e., m = n).

4.1.2.3 With Synchronized ACKs

In the previous case, ACKs may interfere with data transmissions and vice

versa. This interference can be eliminated if the ACK transmissions are synchro-

nized. Specifically, we define

SINRr,SA
a,b,...,c (x) =

Ht,r
x,x

Ht,r
a,x +Ht,r

b,x + ...+Ht,r
c,x +N0
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and

SINRt,SA
a,b,...,c (x) =

Hr,t
x,x

Hr,t
a,x +Hr,t

b,x + ...+Hr,t
c,x +N0

.

Then the maximum data rate across link x

Ra,b,...,c (x) = max
m,n

Z × 8³
Z×8

BR(m)
+ 14×8

BR(n)
+ 2Foh

´
×PSPZ

³
m,SINRr,SA

a,b,...,c (x)
´

×PSP14
³
n, SINRt,SA

a,b,...,c (x)
´
.

Remark 1 While 802.11 uses ACKs, it is difficult to synchronize them in practice.

For example, if the packets are of different sizes and/or the transmission bit-rates

are different, then the ACK packets that follow each data transmission would not

be synchronized. Another approach to ACK synchronization would be to use block

data transfer and block ACK transmission at the end of the time slot, as is done in

802.11e. One important drawback of this approach is that the link layer will reorder

packets; TCP interprets packets that are greatly out of order as an indication of

congestion. Thus, we conclude that synchronized ACKs is not particularly realistic.

Nonetheless, the model is included in our study in order to understand the impact

of interference induced by ACKs.

4.2 Protocol Communication Models

In the above models, the data rate depends on the SINR, and the interference

can be from multiple sources. One drawback of such models is that they do not

easily lend themselves to representations as a graph. The protocol models are an

alternative class of models that does allow graph-based analysis of communication

and throughput algorithms. For this reason, the protocol model is widely used. The

drawback of this model is that it does not accurately model interference.

Four types of protocol models are considered. In all cases, it is assumed that

transmissions across a link can only occur if no transmission is occurring across
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any other links in a specific set of links. These links are referred to as the set of

conflicting neighbors of the link. It is further assumed that a link can transmit

at its full data rate if none of its conflicting neighbors are transmitting, where

the full data rate is the achievable data rate if no link in the entire network is

transmitting. On the other hand, if any link within its set of conflicting neighbors

is transmitting, no transmission is possible. The difference between the various

Protocol Communication Models is the set of conflicting neighbors.

4.2.1 Node Exclusive Model

The Node Exclusive Model is the simplest communication model. In this

case, a link cannot transmit only if the transmitter or receiver is also involved in a

transmission. Since Ht,r
x,y =∞ implies that the transmitter of link x is the receiver

of link y, the set of conflicting neighbors in this case is

χ (x) :=

⎧⎨⎩y

¯̄̄̄
¯̄ Ht,r

y,x =∞, Hr,t
y,x =∞,

Ht,t
y,x =∞, Hr,r

y,x =∞

⎫⎬⎭ .

It is assumed that if data transmissions are successfully received, then the receiver

transmits an ACK, which must be correctly received in order to complete the data

delivery. Thus, the (theoretical) effective data rate across link x is

R∅ (x) = max
m

Z × 8³
Z×8

BR(m)
+ 14×8

BR(1)
+ 2Foh

´ (4.1)

×PSPZ

¡
m,SNRr

∅ (x)
¢
PSP14

¡
1, SNRt

∅ (x)
¢
,

where SNRr
∅ (x) := Ht,r

x,x/N0 and SNRt
∅ (x) := Hr,t

x,x/N0, and we assume that the

ACK is 14 B and is transmitted at the slowest bit-rate. It is important to note that

this data rate neglects interference and hence might not be achieved in practice.

Therefore, the data rate of link x is

Ra,b,...,c (x) =

⎧⎨⎩ R∅ (x) if a, b, ..., c /∈ χ (x)

0 otherwise
,

where R∅ (x) is given in (4.1).
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4.2.2 Two-Hop Node Exclusive Model

The Node Exclusive Model ignores transmissions by nearby nodes. Conse-

quently, this model greatly overestimates the physical layer’s ability to withstand

interference. This model can be made less optimistic by considering interference

from transmissions that are "two hops" away either the transmitter or receiver.

The definition of a hop is problematic. Specifically, even if the channel is quite poor

and hence, the probability of successful transmission is near to, but greater than

zero, if ACKs are used, then eventually a packet will be delivered, establishing a

communication link.

One approach is to define that nodes are one hop apart if the route forwards

packet directly between the nodes. Thus, define N (ν) to be the set of nodes that

node v transmits packet to or receives packets from. Define vt (x) and vr (x) to be

the transmitter and receiver of link x, respectively.

χ (x) := {y| (N (νt (x)) ∪N (νr (x))) ∩ (N (νr (y)) ∪N (νr (y))) 6= ∅} ,

and

Ra,b,...,c (x) =

⎧⎨⎩ R∅ (x) if a, b, ..., c /∈ χ (x)

0 otherwise
.

4.2.3 The Sensing Communication Model

The sensing protocol model is perhaps the most widely examined commu-

nication model. In this case, a transmission across a link between nodes A and B

cannot occur if there is some node C that is also transmitting where the received sig-

nal strength of C’s transmission at either node A or B is above the Channel Sensing

Threshold, denoted by γ. This model is motivated by 802.11. In 802.11 a node will

only transmit if the channel is idle just before transmission. More specifically, the

node will only transmit if the received signal strength of the aggregate of all other

node’s transmissions is below the Channel Sensing Threshold. Furthermore, since
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802.11 uses either RTS-CTS-Data-ACK or Data-ACK, transmissions are two-way.

Thus, in order for a transmission to occur, both the receiver and the transmitter

must find the channel to be idle before transmissions.

The set of conflicting neighbors of link x is denoted χ (x) and is given by

χ (x) :=

⎧⎨⎩y

¯̄̄̄
¯̄ Ht,r

y,x > γ, Hr,t
y,x > γ,

Ht,t
y,x > γ, Hr,r

y,x > γ

⎫⎬⎭ .

This model can be interpreted in a slightly different way based on the Interference

Range. In this model, a transmission across a link x will fail if link y is transmitting

where Ht,r
y,x >Interference Range. Since transmissions are bidirectional, this Inter-

ference Range model is the same as the Sensing Communication Model, but the

Channel Sensing Threshold is replaced with the Interference Range.

The data rate of link x is

Ra,b,...,c (x) =

⎧⎨⎩ R∅ (x) if a, b, ..., c /∈ χ (x)

0 otherwise
.

4.2.4 SINR Protocol Model

The Sensing Protocol Model simplifies 802.11 by assuming that a transmis-

sion can not occur from A to B if the received signal strength from any single node’s

transmission exceeds the Channel Sensing Threshold at either node A or B, and

transmission will successfully occur at full rate otherwise. Thus, two simplifications

are made.

1. The Sensing Protocol Model neglects the aggregate of the interference from

multiple nodes transmitting.

2. The Sensing Protocol Model assumes that if the interfering signal strength is

below particular Channel Sensing Threshold, then transmission at the full rate

is possible.
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This second simplification results from defining a single Channel Sensing

Threshold for all links, where better performance would likely be achieved when

such a parameter is determined on a per link basis. One alternative is to define that

links are not in conflict if SINR at each receiver is above some threshold. SINR

protocol model is the protocol version of the physical model. Here, we provide the

SINR protocol model of the Without ACKs, the With Unsynchronized ACKs and

the With Synchronized ACKs, respectively.

4.2.4.1 Without ACKs

Define the modulation scheme used by link x via

M (x) := argmax
m

Z × 8
Z×8

BR(m)
+ Foh

× PSPZ

¡
m,SNRr

∅ (x)
¢

s.t.:
PSPZ

¡
m,SNRr

∅ (x)
¢
− PSPZ

¡
m,SNRr

∅ (x)−G2−G3
¢

PSPZ (m,SNRr
∅ (x))

≤ G1

where G2 and G3 are used to reduces sensitivity to interference. Specifically, G2

is the buffer for binary conflicts and G3 is the buffer for multi-conflicts which is

presented in Section 5.3. In this study, we used G1 = 0.01, G2 = 2 dB, and G3 = 1

dB.

Two links are in conflict if they cannot both transmit simultaneously and

achieve the target transmission probability. Let T (x,m) be the minimum required

SINR to decode the data and achieve the target success probability at the receiver

of link x when the modulation scheme m is used. A set of T (x,m),m = 1, ...,M (x)

can be obtained for modulation schemes from

T (x,m) = min
(
T
¯̄̄̄
¯PSPZ

¡
m,SNRr

∅ (x)
¢
− PSPZ (m,T −G2)

PSPZ (m,SNRr
∅ (x))

≤ G1

)
.

The set of conflicting neighbors is

χ (x) :=

⎧⎨⎩y

¯̄̄̄
¯̄ SINRr

y (x) < T (x,M (x))

or SINRr
x (y) < T (y,M (y))

⎫⎬⎭ .
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and the (theoretical) effective data rate across link x is

R∅ (x) =
Z × 8

Z×8
BR(M(x))

+ Foh

× PSPZ

¡
M (x) , SNRr

∅ (x)
¢
.

Therefore, the data rate of link x is

Ra,b,...,c (x) :=

⎧⎨⎩ R∅ (x) if a, b, ..., c /∈ χ (x)

0 otherwise
.

4.2.4.2 With Unsynchronized ACKs

Define the modulation schemes for data and ACK used by x via

(M (x) ,N (x)) := argmax
m,n

Z × 8³
Z×8

BR(m)
+ 14×8

BR(n)
+ 2Foh

´ × PSPZ

³
m,SNRr,UA

∅ (x)
´
(4.2)

×PSP14
³
n, SNRt,UA

∅ (x)
´

such that:

PSPZ

³
m,SNRr,UA

∅ (x)
´
− PSPZ

³
m,SNRr,UA

∅ (x)−G2−G3
´

PSPZ

³
m,SNRr,UA

∅ (x)
´ ≤ G1

PSP14
³
n, SNRt,UA

∅ (x)
´
− PSP14

³
n, SNRt,UA

∅ (x)−G2−G3
´

PSP14
³
n, SNRt,UA

∅ (x)
´ ≤ G1

where we assume that data and ACK packets use the same set of G1, G2, G3, and

it is easy to extend to use different set of Guards. m and n are the modulation

schemes that solve (4.2), or the other schemes described just after (4.2) that restrict

m = n or n = 1. These modulation selection schemes are named as OptDataAck,

SameAck and MinAck, respectively.

Two links are in conflict if they cannot both transmit simultaneously and

achieve the target data and ACK transmission probability. Let Tdata(x,m) and
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Tack(x,m) be the minimum required SINR to decode the data or ACK packet and

achieve the target success probability at link x when the modulation scheme m is

used. A set of Tdata(x,m) and Tack(x, n), m = 1, ...,M (x), n = 1, ...,N (x) can be

obtained for modulation schemes from

Tdata(x,m) = min

⎧⎨⎩T
¯̄̄̄
¯̄PSPZ

³
m,SNRr,UA

∅ (x)
´
− PSPZ (m, T −G2)

PSPZ

³
m,SNRr,UA

∅ (x)
´ ≤ G1

⎫⎬⎭
and

Tack(x, n) = min

⎧⎨⎩T
¯̄̄̄
¯̄PSP14

³
n, SNRt,UA

∅ (x)
´
− PSP14 (n,T −G2)

PSP14
³
n, SNRt,UA

∅ (x)
´ ≤ G1

⎫⎬⎭ .

The set of conflicting neighbors is

χ (x) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
y

¯̄̄̄
¯̄̄̄
¯̄̄̄

SINRr,UA
y (x) < Tdata (x,M (x))

SINRt,UA
y (x) < Tack (x,N (x))

or SINRr,UA
x (y) < Tdata (y,M (y))

SINRt,UA
x (y) < Tack (y,N (y))

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

and the (theoretical) effective data rate across link x is

RSINR
∅ (x) =

Z × 8³
Z×8

BR(M(x))
+ 14×8

BR(N (x)) + 2Foh

´
×PSPZ

³
M (x) , SNRr,UA

∅ (x)
´

×PSP14
³
N (x) , SNRt,UA

∅ (x)
´
.

Therefore, the data rate of link x is

Ra,b,...,c (x) :=

⎧⎨⎩ RSINR
∅ (x) if a, b, ..., c /∈ χ (x)

0 otherwise
.

Note that there are three ways to select the ACK rate (i.e., setting n = 1,

n = m or optimizing over both m and n). While selecting different ACK rates will

not result in a significant change in the effective data rate, it will change the value

of Tack (x), which may greatly impact χ (x) and hence have a significant impact on

spatial multiplexing.
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4.2.4.3 With Synchronized ACKs

When the synchronized ACKs are considered, the set of conflicting neighbors

are defined as

χ (x) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
y

¯̄̄̄
¯̄̄̄
¯̄̄̄

SINRr,SA
y (x) < Tdata (x,M (x))

SINRt,SA
y (x) < Tack (x,N (x))

or SINRr,SA
x (y) < Tdata (y,M (y))

SINRt,SA
x (y) < Tack (y,N (y))

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

and the data rate of link x is

Ra,b,...,c (x) :=

⎧⎨⎩ RSINR
∅ (x) if a, b, ..., c /∈ χ (x)

0 otherwise
.

4.2.5 Multiple Modulation Schemes and Transmit Powers SINR Proto-

col Model

Today’s transceivers support a number of bit-rates and transmit powers. Here

we develop an extension of the SINR Protocol Model that supports multiple bit-

rates and transmit powers. We focus on the SINR protocol model and just consider

the case without ACKs, because it is simple and the other two ACK models can be

easily extended.

Suppose that there are M modulation/coding schemes and S transmission

powers available for each link, then associated with each physical link x is the set

of logical links xm,s with 1 ≤ m ≤ M and 1 ≤ s ≤ S. In this case, the assignment

specifies which links are transmitting, their bit-rate, and their transmission power.

Specifically, an assignment v ∈ {0, 1}L×M×S, where vxm,s = 1 implies that the

physical link x is transmitting at bit-rate m and with power pxm,s . Note that, pxm,s

need not be the same as pym,s or pxn,s , that is, the set of transmission powers depend

on the link and the modulation.

54



Let us define SNR and SINR at the receiver of logical link xm,s as

SNRr
∅ (xm,s) =

Hx,xpxm,s

N0
,

SINRr
yn,t (xm,s) =

Hx,xpxm,s

Hy,xpyn,t +N0
.

Let T (x,m, s) be the minimum required SINR to decode the data and achieve the

target success probability at the receiver of link x when the modulation scheme m

and transmission power s are used. Then, T (x,m, s) can be obtained from

T (x,m, s) =

min

(
T
¯̄̄̄
¯PSPZ

¡
m,SNRr

∅ (xm,s)
¢
− PSPZ (m,T −G2)

PSPZ (m,SNRr
∅ (xm,s))

≤ G1

)
.

The set of conflicting neighbors is

χ (xm,s) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩y

¯̄̄̄
¯̄̄̄
¯

SINRr
yn,t (xm,s) < T (x,m, s)

or SINRr
xm,s

(yn,t) < T (y, n, t)

or x = y

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

and the (theoretical) effective data rate across link xm,s is

R∅ (xm,s) =
Z × 8

Z×8
BR(m)

+ Foh

× PSPZ

¡
m,SNRr

∅ (xm,s)
¢
.

Therefore, the data rate of link xm,s is

Ra,b,...,c (xm,s) :=

⎧⎨⎩ R∅ (xm,s) if a, b, ..., c /∈ χ (xm,s)

0 otherwise
.

Note that the size of the conflict graph grows quickly as more modulation schemes

and transmit powers are considered.

4.3 Summary

The communication models found in the literature can be divided into two

classes, named as physical communication models and protocol communication mod-

els. In the case of physical communication models, this chapter presents two different
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models. One is Shannon capacity, and the other is 802.11 style model with three

different options, which are Without ACKs, the With Unsynchronized ACKs and

theWith Synchronized ACKs. In these models, the data rate depends on the SINR,

and the interference may be from multiple sources. The graph theory can not be

applied in these models.

In the case of protocol communication models, this chapter presents node

exclusive model, 2-hop node exclusive model, sensing model, and SINR protocol

model with three options, which areWithout ACKs, theWith Unsynchronized ACKs

and theWith Synchronized ACKs. The protocol model defines the normial data rate

and the set of conflict links for each link, and difference between the various protocol

models is the set of conflicting links. Here, the conflict links is based on pairwise.

Therefore, the graph-based algorithms can be easily applied to the protocol models.
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Chapter 5

CONSTRUCTING THE SET OF CONSIDERED

ASSIGNMENTS

The algorithms described in Chapter 3 iteratively add assignments to the set

of considered assignments. An approach to constructing a good set of assignments

is to start with a particular set of assignments, V, select an assignment v+ /∈ V,

and evaluate the resulting utility with the set of assignments v+ ∪ V. Specifically,

at each iteration, a linear test (3.9) is provided to efficiently determine whether an

assignment should be added to the set of considered assignments.

In this chapter it will be shown that, in the case of Protocol models, finding an

assignment is equivalent to finding the maximum weighted independent set (MWIS).

Solving the MWIS problem is NP-hard [13]. Thus, along with two exact methods,

two approximation methods to find a new assignment are analyzed.

The model of the problem of finding new assignments as a MWIS problem

suffers from some drawbacks in that the graph theoretic model of interference ne-

glects the aggregate impact of interference from multiple transmissions. The new

assignment obtained from Protocol models may not transmit simultaneously. Thus,

this chapter presents techniques for correcting assignments.

Therefore, selecting the initial set V0, selecting which v+ /∈ V to consider,

and removing assignments from V are addressed in sections 5.1, 5.2, and 5.5, respec-

tively. Two methods of correcting the multi-interference for the Protocol model are

presented in section 5.3 and section 5.4.
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Algorithm 3 Selecting an Initial Set of Assignments
1: Set V empty, and set wx = 0 for all links x.
2: repeat
3: Start an assignment v with vx = 0 for all x.
4: Randomly select a link x such that wx = 0. Set wx = 1 and vx = 1.
5: repeat
6: Randomly select a link y such that wy = 0 and y /∈

S
{x|vx=1}

χ(x). Further-

more, check whether each active link in assignment v satisfies the desired
SINR requirement (see Section 5.3).

7: if such a y exists then
set wy = 1, vy = 1.

8: end if
9: until No such a y exists
10: Set V = V ∪ v.
11: until

For all x there exists a v ∈ V such that vx = 1.
12: V is the set of initial assignments.

5.1 Initial Assignments

This initial set of assignments must result in a solution to (3.2) where the flow

rates are non-zero. Two types of initial assignments are used. First, assignments

that have a single link transmitting are included. Second, assignments composed

of links such that any pair of links that are turned on in the assignment are not

in conflict. Specifically, as for the SINR protocol model, all active links in the

assignment must satisfy the corresponding SINR threshold requirement, and the

assignments must be feasible.

The second set of initial assignments is constructed in a greedy way. Each

link is active in one assignment, and each assignment contains as many active links

as possible. The idea is to randomly select a link and add that link to the assignment

v. Then, randomly select next link from the remaining links that are not in conflict

with any links in the assignment v, and add it to v. This is repeated until all

remaining links not in the assignment are in conflict with at least one link in the
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assignment v. This process is repeated until all links are in one assignment. The

Details of the greedy selection is given in Algorithm 3. We note that a wide range

of techniques could be employed to select V (0). An examination of the performance

of these various techniques is left for future work.

5.2 Searching for New Assignments

In light of the above, the main challenge is finding an assignment v so thatP
xR (v, x)µx > λ where µ and λ are the Lagrange multipliers associated with

constraints (3.2b) and (3.2c) of Problem (3.2).

One approach to finding such a v is to solve

max
v

X
x

R (v, x)µx. (5.1)

In most cases, it is not necessary to find the assignment that maximizes
P

xR (v, x)µx,

but just one that satisfies
P

xR (v, x)µx > λ. On the other hand, if no assignment

exists, then the schedule found from the currently considered assignments yields

the optimal throughput. Thus, in order to ensure that the currently considered

assignments result in the optimal throughput, (5.1) must be solved.

Unfortunately, in general, solving (5.1) is NP-hard. However, as shown

shortly, in the case of the protocol communication model, solving (5.1) is equiv-

alent to a graph theoretic problem known as the maximum weighted independent

set (MWIS) problem, which has been extensively studied. Thus, for the cases where

there are a moderate number of links, there are a large number of algorithms that ef-

ficiently solve (5.1). For networks with more links, there are a large set of algorithms

that approximately solve (5.1). And finally, there exists extensive theory regarding

the solutions and solvability of (5.1). The richness of the theory of solving (5.1)

when the protocol communication model is used is the most significant advantage

of the protocol model over the physical model.
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5.2.1 Weighted Conflict Graph

The connection between solving (5.1) and the maximum weighted indepen-

dent set problem is made by the conflict graph. As discussed in Section 4.2, for each

link x, the protocol communication model defines a set of conflicting links χ (x).

The sets of conflicting links induce the conflict graph as follows. Each link in the

network induces a vertex in the conflict graph. Thus, a link x in the network is

associated with a vertex in the conflict graph; this vertex is denoted with x, where

whether x refers to a link in the network or a vertex in the conflict graph is clear

from the context. There is an edge between vertices x and y if y ∈ χ (x) (note, the

we require that if y ∈ χ (x), then x ∈ χ (y)). In the weighted conflict graph, the

vertex associated with link x is assigned weight R∅ (x)µx, where R∅ (x) is the data

rate across link x for the protocol communication model.

5.2.2 The Maximum Weighted Independent Set

5.2.2.1 MWIS and New Assignment

Let us show the equivalence of MWIS and solving (5.1) in this section. An

independent set on the weighted conflict graph is a set of vertices such that no two

vertices in the set are neighbors, that is, if x and y are in an independent set, then x /∈

χ (y). To put it another way, if I = {xi : i = 1, 2, ..} is an independent set, then the

set of links {xi : i = 1, 2, ...} can simultaneously transmit, and each link can transmit

at data rate RI (xi). Furthermore, under the Protocol Communication Model, since

I is an independent set, we have RI (xi) = R∅ (xi), that is, the interference from the

other links in the independent set does not impact the sending rate of link xi. The

weight of an independent set is the sum of the vertex weights. Thus, the weight of

I is
P

x∈I R∅ (x)µx.

Let I be an independent set and let vI be the assignment corresponding to

I, then link x is transmitting in vI if and only if x ∈ I. Hence, R (vI , x) = R∅ (x) if

and only if x ∈ I, and thus,
P

x∈I R∅ (x)µx =
P

xR (vI , x)µx, which is the quantity
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we seek to maximize. Therefore, finding a maximum weighted independent set of

the weighted conflict graph is equivalent to solving (5.1).

5.2.2.2 Related Work of MWIS

The maximum weighted independent set (MWIS) problem is a fundamental

combinatorial problem that has been the focus of a vast amount of research. In

general, MWIS problem is NP-hard. Indeed, it is one of the first problems to be

shown to be NP-hard [13]. However, it is not always NP-hard. If the conflict

graph is a perfect graph, then the MWIS can be found in polynomial time [71].

The class of perfect graphs includes a wide variety of graphs (See pages 279-283

in [71]). For example, the interval graph is a perfect graph. In an interval graph,

each vertex is associated with an interval of the real number line. Two vertices are

neighbors if their corresponding intervals overlap. It is not hard to show that if the

network is restricted to one dimension (e.g., a network along a straight road), then

the conflict graph that results from protocol communication models is an interval

graph. A 2-D version of the interval graph is the disc graph, which, while not a

perfect graph, allows the maximum weighted independent set to be computed in

polynomial time [72]. Besides perfect graphs, maximum independent sets can be

computed in polynomial time for several other classes of graphs., for example, for

"claw-free" graphs [73], for fork-free graphs [74], for trees (see [75] for a linear time

algorithm), for sparse random graphs (see [76] for a linear time algorithm), and for

circle graphs (see [77] for a linear time/space algorithm).

There has been considerable effort focused on computing the MWIS in the

general case. These research efforts tend to take one of two approaches. In one ap-

proach, the goal is to develop algorithms that have good worst-case performance. For

example, [78] reports an algorithm with worst-case time complexity of O
¡
1.2461L

¢
,

while [79] achieves O(1.2431L). One drawback of the worst-case analysis is that most

graphs can be solved much faster than predicted by the worst-case analysis. And
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hence, another approach is to not optimize the worst-case performance, but focus

on the time to find the MWIS in graphs that have been deemed interesting. Com-

putational methods that work well in this respect can be found in [80, 81, 82, 83],

and [84], where [84] is sometimes cited as the current state-of-the-art.

While there are many cases where theMWIS can be determined in polynomial

time, computing the MWIS can be computationally complex. However, criteria (3.9)

does not require that the maximum independent set be found, it only requires that an

independent set be found with weight that exceeds λ. Thus, approximation schemes

can be used to efficiently search for good independent sets. The performance of these

algorithms is compared in Section 6.5. On the other hand, more rapid convergence

can be expected if the weight of the found independent sets are large. Unfortunately,

it is known that there exists ε > 0 such that there is no polynomial approximation

that has approximation ratio better than O (nε) [85], where n is the number of

vertices. Thus, in general, in the worst-case, the total weight of a polynomial time

approximation is a factor of n less than the total weight of the MWIS. However, as

discussed above, the worst-case performance may be considerably worse than what

typically occurs in conflict graphs that arise from mesh networks.

Finding approximate solutions to the MWIS problems is also an active area

of research (e.g., see [86] for a review of some methods). An algorithm suggested by

Kako [56] is simple and often provides good results; it achieves a worst-case approx-

imation ratio of d̄, where d̄ is the average weighted degree, i.e., d̄ = xW (x)

xRxµx
, where

W (x) is the weighted degree of vertex x and is given by W (x) := y∈χ(x)Ryuy

Rxµx
. An-

other algorithm that has been found to perform well in realistic mesh networks

is the WMIN algorithm developed in [87]. WMIN has approximation ratio ∆,

the maximum degree. Other algorithms have approximation ratios
¡
d̄w + 1

¢
/2,

O
¡
d̄w log log d̄w/ log d̄w

¢
, and O (δw log log δw/ log δw), where δw is the weighted in-

tuitiveness of the graph [56]. See [86] for further discussion of some approximation

algorithms for the MWIS problem.
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One drawback of using approximate solutions to the MWIS problem is that if

the approximation scheme does not result in a better assignment, then, in general,

it is not possible to determine whether there does not exist a better assignment

(and hence the current schedule is optimal) or there does exist a better assignment,

but the approximation algorithm is unable to find it. While in general, such a

determination is not possible in polynomial time, as discussed next, in some cases it

is possible, and, indeed, in all the realistic mesh networks we have examined, such

a determination is possible in polynomial time.

Two important metrics of weighted graphs are ω, the total weight of the

MWIS and K, the weighted chromatic number. In general, both numbers are NP-

hard to compute. However, the Lovász number, V can be computed in polynomial

time via semi-definite programming [71] and ω ≤ V ≤ K. In some cases (e.g., in

the case of a perfect graph), ω = V. Thus, in such cases it is possible to compute

ω in polynomial time. Therefore, in general, if an approximation method fails to

find a new assignment with revenue greater than λ, then one can compute the V in

polynomial time and check whether λ = V. If λ = V, then the optimal schedule has

been found. On the other hand, since V is only an upper bound on ω, λ < V does

not imply that the assignment found by the approximation is not optimal. However,

we have found that for the realistic mesh networks examined, at convergence (i.e.,

after Algorithm 1 has converged), we have λ = V. Unfortunately, while it is possible

to compute V in polynomial time, it does take a considerable amount of time and

we have been unable to confirm if ω = V for networks with more than 100 links.

5.2.3 Approximation Algorithms for MWIS

Criteria (3.9) does not require that the maximum independent set be found,

it only requires that an independent set be found with weight that exceeds λ. Thus,

approximation schemes can be used to efficiently search for good independent sets.
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5.2.3.1 Kako’s Algorithm

Here we apply a technique to find a good weighted independent set developed

by Kako et al [56]. Kako’s algorithm is a greedy algorithm, and we have found that

Kako’s algorithm provides good results based on a large number of computational

experiments. Let L be a subset of the vertices in conflict graph. Hence, the subgraph

induced by L is the set of vertices L and if x ∈ L, then the neighbors of x are the

set of vertices χ (x) ∩ L.

Kako’s algorithm is a greedy algorithm based on the weighted degree. For

each non-selected vertex, compute the weighted degree, which is defined as the sum

of a vertex’s neighbors’ weights divided by the vertex’s weight. Hence, a vertex

has a small weighted degree if its weight is large and it has only a few neighbors

and/or its neighbors’ weights are small. Once the weighted degrees are computed,

the vertex with the smallest weighted degree is selected, and all of the selected

vertex’s neighbors are removed from the graph. The process is repeated until there

are no vertices left in the graph. The performance of Kako’s method depends on

the inductiveness of the graph, see [56] for details.

Definition 1 The weighted degree of a vertex in the subgraph induced by L is

W (x,L) :=
P

y∈χ(x)∩LR∅ (y)uy

R∅ (x)µx
, (5.2)

where, R∅ (x)µx is the weight associated with vertex x.

Kako’s algorithm is as follows.

1. Set L (0) to be all the vertices in the conflict graph and set k = 0.

2. For each vertex in L (k), compute the weighted degree.

3. Select the vertex, x∗ (k) , with the smallest weighted degree and include this

vertex into the estimate of the maximum weighted independent set
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4. Set L (k + 1) = {y ∈ L (k) : y /∈ χ (x∗ (k))}.

5. If L (k + 1) is empty, stop.

6. Otherwise, set k = k + 1 and go to 2.

This algorithm has approximation ratio d̄w where d̄w is the weighted degree

of the conflict graph [56]. However, this algorithm has much better performance in

practice.

5.2.3.2 WMIN Algorithm

Let us define

S (x,L) = R∅ (x)ux
dL (x) + 1

where R∅ (x)ux is the weight associated with vertex x, and dL (x) is the degree of

vertex x in the subgraph induced by L.

WMIN [87] is a greedy algorithm in which a vertex x maximizing S (x,L)

over all x ∈ L is selected in each iteration. Therefore, once the S (x,L) for all

vertices is computed, the vertex with the largest S (x,L) is selected, and all of the

selected vertex’s neighbors are removed from the graph. The process is repeated

until there are no vertices left in the graph.

WMIN’s algorithm is as follows.

1. Set L (0) to be all the vertices in the conflict graph and set k = 0.

2. For each vertex in L (k), compute S (x,L (k)).

3. Select the vertex, x∗ (k) , with the largest S (x,L (k)) and include this vertex

into the estimate of the maximum weighted independent set

4. Set L (k + 1) = {y ∈ L (k) : y /∈ χ (x∗ (k))}.

5. If L (k + 1) is empty, stop.
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6. Otherwise, set k = k + 1 and go to 2.

This algorithm has approximation ratio ∆ where ∆ is the the maximum

degree of the conflict graph.

5.2.4 Exact Algorithms for MWIS

5.2.4.1 Integer Programming

Another way to compute theMWIS is to use Integer Linear Programming(ILP).

Specifically, the MWIS problem can be written as

max
v

LX
x=1

Rxµxvx (5.3)

such that: vx + vy ≤ 1 if y ∈ X (x) (5.4)

vx ∈ {0, 1} .

Note that since vx ∈ {0, 1}, this problem can also be solved with binary program-

ming.

However, in large networks, there are many constraints (5.4). The computa-

tion time can be dramatically improved if a clique decomposition is used. Specifi-

cally, a set of cliques {Qi, i = 1, 2, ...M} are found such that if y ∈ χ (x), then there

is a clique Qi such that x ∈ Qi and y ∈ Qi. Then, Problem (5.3) becomes

max
v

LX
x=1

Rxµxvx (5.5)

subject to:
X
x∈Qi

vx ≤ 1 for i = 1, 2, ...,M

vx ∈ {0, 1} .

There are many commercially available mixed integer and binary programming tools

(e.g., CPLEX [88]). Our work has found that this method works well in practice,

and is used mostly in our research.
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While an optimal clique decomposition might further improve the computa-

tion time, a simple greedy clique decomposition results in a factor of ten improve-

ment over (5.3). Algorithm 4 shows the greedy algorithm to find such a set of cliques

{Qi , i = 1, 2, ...M}.

Algorithm 4 Greedy Algorithm of Clique Decomposition

1: Notations: #(χ (l)) is the number of elements in the conflict set of link l. I l (j)
is the index of link j in χ (l). W l

Il(j)
= 1 means that the conflict between link l

and link j has been included in some clique.
2: Set i = 1. SetWl = 01×#(χ(l)) for each link l.
3: for l = 1 to L do
4: while (minj∈χ(l)W l

Il(j) = 0) do
5: Randomly select a link j from the links with W l

Il(j)
= 0, set Qi = [l j].

6: Set W l
Il(j) = 1.

7: Set W j
Ij(l)

= 1.

8: while (∩k∈Qi

n
j|j ∈ χ (k) and W k

Ik(j)
= 0

o
6= ∅) do

9: Randomly select a link k from ∩k∈Qi

n
j|j ∈ χ (k) and W k

Ik(j)
= 0

o
.

10: Set Qi = [Qi k]
11: Set W j

Ij(k)
= 1 for j ∈ Qi

12: Set W k
Ik(j) = 1 for j ∈ Qi

13: end while
14: i++
15: end while
16: end for
17: Set M = i− 1; The set of cliques is {Qi : i = 1, ...,M}.

Let us define some notations first. Wl is a 1×#(χ (l)) vector, where#(χ (l))

is the number of elements in the conflict set of link l. I l (j) is the index of link j

in χ (l), so that χ (l)
¡
I l (j)

¢
= j and if j /∈ χ (l), then I l (j) is not defined. If

W l
Il(j) = 1, it means that the conflict between link l and link j has been included in

some clique.

The idea of Algorithm 4 is as follows. First, initialize Wl = 01×#(χ(l)) for

each link l and set l = 1, since we will start by processing link 1. The first clique,

67



Q1, is initialized, Q1 = {l}. Then we search for a new link j that is in conflict with

all links in Q1 and that the conflict between l and j has not already been included

into some clique, i.e., W l
Il(j) = 0 and W j

Ij(l)
= 0. We add this j to the clique , i.e.,

Q1 = [Q1 j], and mark that the conflict between l and j is in some clique, i.e., set

W l
Il(j)

= 1 andW j
Ij(l)

= 1. If there does not exist such a link j, Q1 is a clique. Then,

the above procedures are repeated to search for the next clique Q2. We keep on

searching the cliques until Wl = 1 for each link l. Then, we get the set of cliques

{Qi , i = 1, 2, ...M}.

5.2.4.2 Maximum Weighted Clique

WClique [84] is an exact method to find the maximum independent set by

finding the maximum weighted clique in the complement graph. Let Gc be the

complement graph of the conflict graph G. In graph theory, the complement or

inverse of a graph G is a graph Gc on the same vertices such that two vertices of

Gc are adjacent if and only if they are not adjacent in G. That is, to find the

complement of a graph, you fill in all the missing edges, and remove all the edges

that were already there. It is not the set complement of the graph; only the edges

are complemented.

The vertices of the maximum weighted clique of Gc are the vertices of G

without edges, which construct an independent set with maximum weight in the

conflict graph G. It is easy to see that finding the maximum weighted clique of Gc

is equivalent to finding the maximum weighted independent set of G.

To find the maximum weighted clique, we impose an order on the vertices:

V = {v1, v2, ..., vn} where the total number of vertices is n. The performance of

the algorithm depends on the ordering of the vertices. The following ordering was

chosen because it outperformed the other orderings that were tried. The vertices

are labeled vn, vn−1, ... in the order they are chosen. For each choice of next vertex

to add to this list, we consider the graph induced by the vertices that have not yet
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been added. Among the vertices with smallest weight in this graph, we pick the one

with the largest sum of weights of adjacent vertices.

In the algorithm, we calculate the values of the function C(i), which de-

notes the largest weight of a clique in the subgraph induced by the vertices Si =

{vi, vi+1, ..., vn}. Then, C(n) = w(n), where w(i) is the weight of vertex vi. C(n−

1), C(n− 2), ... are determined in a backtrack search. To determine C(i), we search

for cliques that contain vi and that have weight greater than C(i+1). We maintain

a set of vertices that are adjacent to all vertices fixed so far in the search. This set

is called the working set. At each level of the search tree, one vertex of the working

set is fixed. The new working set consists of the intersection of the vertices adjacent

to the fixed vertex and the vertices in the working set. The detailed description of

WClique can be found at [84].

5.3 Correcting Protocol Communication Models

The model (3.1) is a binary model in that it only considers conflicts between

two links. However, conflicts between more than two links can occur. For example,

it is possible that x /∈ χ (y), x /∈ χ (z), and y /∈ χ (z). Thus, according to the binary

conflict model, links x, y, and z can all simultaneously active. However, it is possible

that the combined interference from y and z, results in enough interference such that

transmission across link x fails with high probability. In this case, we say that the

links x, y, and z form a multi-conflict. Schedules that use assignments that contain

multi-conflicts will have low throughput when deployed. Thus, such assignments

should be removed. While the scheme described above removes all binary conflicts,

as described next, we remove multi-conflicts only as they arise.

Let v+ be an assignment found by solving (5.5). v+ has a multi-conflict if

there is a link x with v+x = 1 and links {yi : i = 1, 2, ...K} with v+yi = 1 and
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T (x) > SINR (x, {y1, y2, ..., yK}) :=
Hx,xPK

i=1Hyi,x +N0

(5.6)

where T is the SINR threshold for link x. This multi-conflict is defined by the set

C = {x} ∪
K[
i=1

{yi}. An assignment that maximizes (5.5) and yet does not contain

this multi-conflict can be found by solving

max
v

LX
x=1

Rxµxvx (5.7)

subject to:
X
x∈Qi

vx ≤ 1 for i = 1, 2, ...,MX
x∈C

vx ≤ |C|− 1

vx ∈ {0, 1} ,

where |C| is the number of links in the set C. Intuitively, C should be the smallest

set of links that forms a multi-conflict at link x. Solving (5.7) will result in another

assignment. If this assignment also has a multi-conflict, then the above problem

is further modified. Thus, after N multi-conflicts are found, new assignments are

found by solving

max
v

LX
x=1

Rxµxvx (5.8)

subject to:
X
x∈Qi

vx ≤ 1 for i = 1, 2, ...,MX
x∈Ci

vx ≤ |Ci|− 1 for i = 1, 2, ..., N

vx ∈ {0, 1} ,

where Ci is the ith multi-conflict.

Note that each time a multi-conflict is found, (5.8) must be resolved. Thus,

a large number of multi-conflicts can result in significant computation. The section

6.2.2 finds that only a small number of multi-conflicts arise when forming schedules
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in practical mesh networks. Also, note that it is important that the initial set of

assignments constructed with Algorithm 3 is free from multi-conflicts.

5.4 The Accuracy of Protocol Models

While the protocol communication models have the significant benefit that

the computational algorithms can be analyzed with graph theoretic means, these

models suffer from the drawback that they do not accurately represent interference.

In order to gauge the impact of these approximations, the physical throughput of

the schedules found from the protocol model were computed. That is, suppose that

the optimal schedule based on the protocol model resulted in assignment v. In the

protocol model, the data rates over link x for this assignment is R∅ (x), where the

∅ denotes that the data rate is based on the assumption that no other node is

transmitting.

When there are multiple active links in assignment v, it is unreasonable

to ignore the interference because link x may not achieve the normial data rate.

Assume the WithUnsyncACK physical model is used and the modulation schemes

of the data and ACK of link x are (m,n), the actual link data rate is

RActual(SINRr, SINRt,m, n) =
PSPZ (m,SINRr)PSP14 (n, SINRt)

1
Z×8

³
Z×8

BR(m)
+ 14×8

BR(n)
+ 2Foh

´ (5.9)

where SINRr, SINRt are the received SINR at the receiver and transmitter of

link x. With these actual link rates, the actual flow rate from the gateway(s) to

each destination can be determined.

5.4.1 Adjust Active Link Rate for Optimal Scheduling

Although adding multi-conflicts constraints can solve the multi-conflicts prob-

lem, it requires solving more MWIS problems and increases the corresponding com-

putation time. It is possible to correct the multi-conflicts by adjusting the link data

rate after we ignore the multi-conflicts and compute the optimal schedule.
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Since the SINRr, SINRt of each active link are known, we can adjust the link

modulation schemes and eliminate the multi-conflicts. The modulation adjustment

scheme ROpt(SINRr, SINRt) is defined as

ROpt(SINRr, SINRt) = max
m,n

RActual(SINRr, SINRt,m, n).

The flow rate can be determined from the new adjusted link rates.

5.5 Removing Redundant Assignments from the Set of Considered As-

signments

The motivation of this is that if V is small, then problem (3.2) can be solved

quickly. However, as more assignments are added to V, then its size will grow,

defeating this goal. Thus, it is useful to remove assignments if they are guaranteed

to never be used as active assignments. To see how this is done, suppose that V,

the set of considered assignments, yields a set of considered link bit-rates, R, and

let r be an element in R. Then, to see if the assignment r can be removed from R,

we check whether

r ∈ interior of Co (R\r) , (5.10)

where Co (R\r) is the convex hull of R\r and R\r is the set R with r removed. If

(5.10) holds, then the link bit-rates achieved by r can also be achieved by using a

set of bit-rates in R\r. Hence, the assignment r can be removed without impacting

Co (R). Figure 3.1 illustrates a redundant assignment that can be removed.

From Theorem 1, we know that the optimal vector of bit-rates is the convex

sum of no more than L assignments. Similarly, the vector of bit-rates that solves

(3.2) for any set of assignments is also the convex sum of no more than L assignments.

Therefore, the set of active assignments, V∗ (µ∗) , should contain no more than L

elements. If V∗ (µ∗) does contain more than L elements, then there must be some

redundancies in the set of considered assignments, and hence some assignments can

be removed.
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Determining if (5.10) is true for some r ∈ R can be determined by solving a

linear programming problem. Hence, a check for redundancy requires solving #V

LP problems. See [89] for details.

5.6 Summary

It is well known that finding an assignment is equivalent to solving a maxi-

mum weighted independent set problem in the case of protocol models. In the worst

case, MWIS problem is NP-hard. Therefore, this chapter presents two exact meth-

ods and two approximation methods to solve the MWIS problem. As we will see

in chapter 7, MWIS problem that arises from optimal scheduling in wireless mesh

networks can be solved quickly.

Protocol models have a drawback in that the aggregate interference frommul-

tiple transmissions is neglected. Thus, two methods of correcting the multi-conflicts

are presented. Also, this chapter presents a greedy approach to constructing an

initial set of assignments and the techniques to remove the redundant assignments.
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Chapter 6

NUMERICAL EXPERIMENTS FOR OPTIMAL

SCHEDULING

One of the important aspects of throughput optimization is that in theory, de-

termining the optimal throughput has a theoretical worst-case computational com-

plexity that makes computing throughput even for small networks (e.g., 30 links)

intractable with today’s computing abilities. However, the theoretical worst-case

performance provides little insight into the typical performance that occurs in mesh

networks. Thus, it is imperative that the performance be examined in realistic

mesh networks. For this reason, this examination employed the UDel Models [90].

Along with a realistic mobility simulator, the UDel Models include a map builder,

a realistic propagation simulator, and large collection of data and trace files. The

propagation simulator is based on ray-tracing and accounts for reflections off of the

ground and off of buildings, transmissions through building walls, and diffraction

around and over buildings [91]. It also accounts for the impact that different mate-

rials have on reflections off of walls and transmission through walls. Data sets for

several urban areas are available online.

This chapter is organized as follows. The methods to generate different kind

of network topologies are denoted in section 6.1. Section 6.2 presents several basic

experiments for optimal scheduling, such as the number of iterations to converge

and the number of multi-conflicts etc. To evaluate the performance of different

communication models, a large set of simulations are executed in Section 6.3. Also,

74



Figure 6.1: A portion of map of simulated region used for determine the perfor-
mance and behavior of throughput maximization techniques. Mesh
routers are shown as orange dots with green circles. The full region is
13x9 blocks.

the techniques to fix the multi-conflict for the SINR Protocol Model are examined.

In the section 6.4, the throughput of optimal scheduling is compared with that of

802.11a, and the performance has a great improvement. Section 6.5 compares the

performance of different methods to finding the MWIS. Finally, Section 6.6 discusses

the impact of the topology on throughput.

6.1 Topology Generation

In order to examine the throughput of urban mesh networks, a large set of

simulated urban mesh networks were generated for the future simulations.
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Figure 6.2: 6 × 6 block region of Downtown Chicago. The mesh routers are dis-
played as triangles and the gateways are triangles with a circle. The
6× 6 block region is randomly chosed from 2km2 region of downtown
Chicago. The left frame is a network with 1 gateway and 36 mesh
routers. The right frame is a network with 6 gateways and 18 mesh
routers.

6.1.1 6× 6 Block Region of Downtown Chicago - Outdoor Nodes

Many of the results shown or referred to here are derived from a simulation

of a 2 km2 (13× 9 block) region of downtown Chicago. Figure 6.1 shows part of the

region along with the placement of the outdoor mesh nodes. There are 500 outdoor

mesh nodes in the entire region. Each network was based on a 6 × 6 block region

of downtown Chicago that was randomly selected from a 2 km2 region. Figure 6.2

shows two examples of the 6 × 6 block region of downtown Chicago. The radio

propagation was determined with the UDelModels [90].

In order to estimate the typical performance of an urban mesh network, sev-

eral different types of topologies were generated, and ten trial topologies were gener-

ated for each topology type. The topology types are characterized by the number of

wireless mesh routers and the number of wired gateways. In these experiments, all

traffic flowed from gateways to destinations, where each mesh router in the topol-

ogy was a destination of a flow. Mesh routers and gateways were assumed to be
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placed on lampposts. Apart of this restriction, mesh routers were uniformly spread

throughout the region. The simulated area was partitioned into equal size regions

where the number of regions is the same as the number of gateways. A gateway was

randomly located within each region. Mesh routers within a region receive packets

from the gateway within the same region.

Finally, the number of nodes ranged from 18 to 90 so that the average number

of nodes per block ranged from 0.5 to 2.5 in steps of 0.5. The number of gateways

ranged from 1 to 6. Since 10 samples of each topology were generated, a total of

300 topologies were used.

Packets were forwarded to their destination over least hop paths. Among

paths with the same number of hops, the path selected was the one that had the

highest minimum link channel gain, where the minimization is over each hop along

the path. Each flow originates at the gateway such that the best route from the

gateway to the destination of the flow is no worse than any route from any other

gateway.

6.1.2 2km2 Region of Downtown Chicago - Indoor and Outdoor Nodes

We consider the 2km2 (13×9 block) region of downtown Chicago with indoor

and outdoor nodes. The topology generations are given in details in Section 6.8. In

this experiment, all traffic flowed from gateways to destinations, where each mesh

router in the topology was a destination of a flow.

For the urban propagation model, nodes were placed to mimic a large in-

frastructure network. Specifically, outdoors, nodes were placed on lampposts through-

out the city, and indoors, enough nodes were placed on each floor so that the entire

floor was covered. In all, the baseline set of nodes included over 7000 nodes posi-

tioned throughout the city and over 10000 topologies are examined. Here, max-flow

routing is deployed to find the path for each flow.
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Algorithm 5 Max-Flow routing for a nonzero flow
1: while Select a destination n such that Fn > 0. do
2: while Fn > 0 do
3: Set i = 1, ni = n.
4: repeat
5: Select an ingress link xi of router ni with link data rate Sxi > 0.
6: if The transmitter nt of link xi is not a gateway then

Set i = i+ 1, Set ni = nt.
7: end if
8: until The transmitter nt of link xi is a gateway
9: Set r = min(Fn, Sx1, Sx2, ...). Set Sxi = Sxi − r. Set Fn = Fn − r.
10: end while
11: end while

6.1.2.1 Max-Flow Routing

Interference aware, multi-path max-flow routing is found by solving

max
S,F

F (6.1a)X
{x:xt=w}

Sx −
X

{y:xr=w}

Sy + F = 0 for w /∈ GW (6.1b)

Sx
r (x)

+
X

y∈χ(x)

Sy
r (y)

≤ 1 for all x, (6.1c)

where Sx is the flow over link x. Note this optimization problem approximates the

impact of interference. Specifically, Sx
r(x)

is the fraction of time that link x transmits,

and hence (6.1c) ensures that the fraction of time that link x transmits and the

fraction of times that all links that interfere with link x transmit sum to no more

than one. Of course, it is possible that some links that interfere with x can transmit

simultaneously. But (6.1c) does not account for this possibility. Thus, (6.1) provides

a lower bound on the throughput. It should be pointed out that while problem

(6.1) is polynomial, solving (6.1) was, by far, the computational bottleneck of this

investigation.
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Algorithm 6 Greedy Method to Select Single Path
1: Let Sx be the optimal flow rates that solve (6.1) and set W = ∅.
2: repeat
3: Randomly select w ∈ N and w /∈W.
4: Set W = w ∪W.
5: P (w) = argmax{p∈P|p is a path to w}minx∈p Sx, i.e., P (w) is the path that re-

sults in the highest flow to w.
6: S (w) = min

¡
F,minx∈P (w) Sx

¢
.

7: Set Sx = Sx − S (w) for each x ∈ P (w).
8: until
9: W = N .

Problem (6.1) results in multipath routing. There are many different routings

that accommodate a given link flow rate Sx and the connection rates F . One simple

approach to finding paths from the gateways to mesh routers is given in Algorithm

5. Note that the above scheme may result in multiple paths between a single source-

destination pair.

Single path routing can be formed by quantization as follows. Define P (w) to

be the set of paths from some gateway to node w. Then the greedy algorithm shown

in Algorithm 6 is used to construct P (w), a path from some gateway to node w.

6.2 Results for Optimal Scheduling

Topologies generated in Section 6.1.2 and the SINR Protocol Model with Un-

synchronized Acks are deployed to evaluate the performance of optimal scheduling.

These topologies included the outdoor lamppost-mounted nodes along with indoor

infrastructure nodes. Nodes were randomly selected so that the network was con-

nected and each node had approximately six neighboring nodes with which it can

communicate at 24 Mbps using 802.11a. This node density resulted in the conflict

graph having a degree of between 15 and 20. Once the nodes were selected, a set of

gateways was selected so that the number of gateways equals the number of nodes
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Figure 6.3: Variation in the computed throughput as assignments are added. In
(a) the throughput is the total utility, i.e.,

P
φ∈Φ log(fφ). In (b) the

throughput is minφ∈Φ fφ. These plots are for a 1024 node (992 link)
topology.

divided by 32. The gateways were selected such that they were uniformly distrib-

uted. In this way, topologies were made with 64, 128, 256, 512, 768, 1024, and 2048

nodes. For each number of nodes, 40 sample topologies were generated.

6.2.1 Number of Iterations until Algorithm 1 Stops

Figure 6.3 shows how, in the 1024 node (992 link) topology, the throughput

increases as the more assignments are added. The point of maximum throughput

occurs when the solution to the ILP (5.5) does not satisfy (3.9) or the stopping

condition specified in Algorithm 1 is met. Thus, in this case, Algorithm 1 stopped

after 186 iterations when the throughput metric was G (f) =
P

φ∈Φ log (fφ), and

after 191 iterations when the throughput metric was G (f) = minφ∈Φ fφ. When

G (f) =
P

φ∈Φ log (fφ), the stopping condition used ρ = 0.15, while for the case of

G (f) = minφ∈Φ fφ we used ρ = 0.05. Note that since the objective functions are

different, the values of ρ should not be compared.

As can be observed, the number of iterations is approximately the same for

both objective functions. Figure 6.4 explores this behavior in more detail and shows

that the average number of iterations over 40 topology samples is approximately
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Figure 6.4: Number of iterations until Algorithm 1 stopped. In (a) G(f) =P
φ∈Φ log(fφ) and ρ = 0.15 In (b) G(f) = minφ∈Φ fφ and ρ = 0.05.

the same for both objective functions. Moreover, since the log-log scale is used,

Figure 6.4 indicates the number of iterations increases polynomially with the number

of links. Note that Figure 6.4 only shows the case of G (f) =
P

φ∈Φ log (fφ) for

topologies up to 1024 nodes. Due to numerical difficulties, we were not able to solve

(3.2) for 2048 nodes even for a small number of assignments. Thus, we conclude

that when G (f) =
P

φ∈Φ log (fφ), the computational bottleneck is not finding new

assignments, but solving the basic nonlinear optimization (3.2).

Note that only one assignment is added at each iteration. Thus, the maximum

number of elements in V is the number of assignments found in Algorithm 3 plus the

number of iterations required by Algorithm 1. Hence, we have achieved the goal of

determining the solution to (3.2) for V = V̄ by computing the solution to (3.2) for a

small set V. The complexity of solving linear and nonlinear optimization problems

is well known, and is not investigated here.

6.2.2 The Number of Multi-Conflicts

As mentioned in Section 5.3, in order for the throughput found by solving

(3.2) to match the actual throughput when the schedule is deployed, the assignments

used in the schedule must not have any multi-conflicts. The scheme discussed in

Section 5.3 can be used to remove the multi-conflicts.
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Figure 6.5: The average number of multi-conflicts detected and removed for
topologies of different sizes.

However, each time a multi-conflict is detected and removed, an ILP problem

(5.8) must be solved, increasing the overall computation time. Figure 6.5 shows the

average number of multi-conflicts found (and removed) for various sizes of networks.

Roughly, the number of multi-conflicts grows with the number of nodes and the

number of gateways. Comparing Figure 6.5 to Figure 6.4 we observe that the number

of multi-conflicts is much smaller than the total number of iterations. On the other

hand, failing to remove multi-conflicts can severely impact the throughput when the

schedule is deployed.

6.2.3 Time to Perform Clique Decomposition

As discussed in Section 5.2.4.1, the time to find a new assignment is greatly

reduced if a clique decomposition is performed first. Figure 6.6 shows that the time

required to perform this decomposition is on the order to the time it takes to perform

one iteration of Algorithm 1. Since Algorithm 1 requires that tens or hundreds

of iterations are performed, the time to compute a single clique decomposition is

negligible. However, we do not recompute the clique decomposition every time a

multi-conflict is found.
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Figure 6.6: Time to compute a clique decomposition as a function of the number
of nodes in the network.
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The results shown are for 90 node networks.
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6.3 Results for Communication Models

6.3.1 Optimality of Schedules Based on Protocol Models.

90 node topologies generated in Section 6.1.1 are examined in this subsection.

As mentioned in Section 5.2.2, the Lovasz number, V (G,w), is an upper bound on

α (G,w), the weight of the maximum weighted independent set. Thus, if maximum

assignment cannot be found that satisfies the inequality of (3.9) and has a weight

that is the same as V (G,w), then the optimal schedule has been found. On the

one hand, in general, V (G,w) is only an upper bound, and hence, the equality of

V (G,w) and weight of a found independent set is only a sufficient condition for the

schedule being optimal. On the other hand, there are a large class of graphs (e.g.,

perfect graphs) where the V (G,w) = α (G,w). In these cases, the equality of the

Lovasz number and weight of the found independent set is a necessary and sufficient

condition for the schedule being optimal. It is not known whether the graphs that

arise in urban mesh networks are such that V (G,w) = α (G,w).

However, Figure 6.7 shows the V (G,w) and the weight of the independent set

found once Algorithm 1 had converged (i.e., we were unable to find an assignment

such that
P

µxR (v, x) > λ). As can be observed, we have V (G,w) = α (G,w),

ensuring that the Algorithm 1 has indeed converged to the optimal schedule.

6.3.2 Performance of Communication Models

Figure 6.8 shows the theoretical and actual throughput for Node Exclusive,

2-hop Node Exclusive, and Sensing models. The theoretical and actual throughputs

are the results from the optimal schedule that uses nominal link bit rate and actual

link bit rate, respectively. The throughput is averaged over 40 samples for each

topology, and the number of gateways is equal to the number of nodes divided by

32. One complication with the Sensing model is that the Channel Sensing Threshold

must be determined. In Figure 6.8, Channel Sensing Threshold= −90dBm. All

of the models provide high theoretical throughputs. However, since these models
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Figure 6.8: Computed theoretical and actual throughputs for NodeX, 2-hop
NodeX and Sensing models where the number of Gateways is equal to
number of nodes divided by 32.

do not accurately represent the interference, it is not surprising that the actual

throughputs are very poor. Specifically, Node Exclusive and 2-hop Node Exclusive

models always have zero actual throughput, and Sensing model shows a small actual

throughput when the network size is small and zero otherwise. The schedules from

the Node Exclusive and the 2-hop Node Exclusive Models consistently result in no

data traversing some links. Hence, the high theoretical throughput offered by the

node exclusive model is fictitious.

Figure 6.9 shows the theoretical and actual throughputs for SINR Protocol

Model with Unsynchronized ACKs , Synchronized ACKs andWithout ACKs, where

the multi-conflicts are ignored and the MinAck selection scheme is used if ACK

applies. As compared to using ACKS, Without ACKs eliminates overhead of ACK

transmission, reduces the interference induced from ACK, and hence, achieves more

spatial multiplexing. For these reasons, Without ACKs outperforms the schemes

using ACKs. The Synchronized ACKs case slightly outperforms the Unsynchronized

ACKs because the synchronization eliminates the interference between data and
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Figure 6.9: Computed theoretical and actual throughputs for SINR Protocol
Model with UnsyncAck, SyncAck and WithoutAck.

ACK packets. The actual throughput of SINR Protocol Model is very close to the

theoretical throughput. The reason for this behavior is that SINR Protocol Model

accurately represents the interference.

6.3.3 Performance of CorrectingMulti-conflicts and Adjusting Bit-Rates

There are two methods to correct the multi-conflicts for SINR protocol model.

One way is to add multi-conflicts constraint, named as fixing multi-conflicts, during

the process to find the optimal schedule. The other way is to ignore multi-conflicts

during the schedule optimization, but then adjust the link bit rates once the schedule

and SINRs are known.

We consider three options to choose data and ACK transmission rates, namely

MinAck, which uses the minimum ACK rate, SameAck, which uses the same data

and ACK rate, and OptDataAck which might use the different data and ACK rates

and selects the bit-rates to minimize the transmission time across a link (including

retransmissions). These different methods correspond to the different ways to select

the bit-rate for ACKs used in (4.2).
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Figure 6.10: (a) The theoretical throughput for modulation selection schemes Mi-
nAck, SameAck and OptDataAck with fixing multi-conflicts or not
(b) The actual throughput (c) The adjusted throughput

It should be emphasized that in this section we consider adjusting the bit-

rates at two different stages. First, before the schedule optimization, the nominal

data and ACK bit-rates are selected as described in Section 4.2.4.2. Then, once

the schedule has been computed, the bit-rates can be adjusted for each link and

each assignment. In the first case, the bit-rates are selected based on SNR; while

in the second case, the bit-rates are selected based on SINR. Also, in the first case,

three possible ways of selected data and ACK bit-rates are considered, while in

the second case, only the OptDataAck scheme is used. The reason for considering

different schemes in the first case is that different schemes might result in different

amounts of spatial multiplexing. However, once the schedule is determined, the

spatial multiplexing is fixed.

Figure 6.10 shows the theoretical, actual, and adjusted throughputs for the

three link modulation selection schemes where for each scheme multi-conflicts are

either eliminated or not. The throughputs are normalized as follows. For each

topology, the maximum actual throughput found over all six schemes but where

the bit-rates are adjusted after the schedule has been determined. The right-hand

frame shows the throughputs after the bit-rates have been adjusted. Thus, due to
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normalization, some of the throughputs are one.

The left-hand frame in Figure 6.10 shows the theoretical throughput is not

affected by whether multi-conflicts are fixed or not. On the other hand, the middle

frame in Figure 6.10 shows that the actual throughput of the schemes when multi-

conflicts are ignored can be smaller than the theoretical throughput. For example,

for the MinACK scheme, the actual throughput is 3-5% less than the theoretical,

but for the OptDataACK scheme, the actual throughput is reduced by 12% when

the topology has 2048 nodes. Also, as expected, the actual throughout is same as

the theoretical throughout if we fix the multi-conflicts.

The right-hand frame of Figure 6.10 shows that the throughput after the bit-

rates are adjusted. In this case, there is minimal difference between accounting for

multi-conflicts or not. Thus, in terms of throughput, as long as bit-rates are adjusted

after the schedules are computed, multi-conflicts can be ignored. On the other hand,

according to the algorithm described in Section 5.3, every time a multi-conflict is

discovered, the MWIS problem must be changed and resolved. This can greatly

increase the computational complexity. Thus, we conclude that multi-conflicts can

be ignored.

Note that in the case of MinACK, the actual throughput after adjusting the

bit-rates is about 5% larger than the theoretical throughput. This behavior is due to

suboptimal selection of the nominal bit-rates, which is corrected after the schedule

is computed. This shows the utility of the simple procedure of adjusting bit-rates

after schedules are computed.

Finally, note that the MinACK scheme achieves higher throughput than the

other schemes. This behavior is expected since increasing the ACK rate does not

greatly impact the effective data rate, but may significantly impact the set of con-

flicting links, and hence impact spatial multiplexing.
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Figure 6.11: Comparison between optimal scheduling and 802.11 in mesh networks
covering 6×6 block regions of downtown Chicago.

6.4 Comparison with 802.11 CSMA/CA

With the ability to compute optimal schedules, the impact of optimal sched-

ules on the throughput as compared to 802.11 with CSMA/CA can be investigated.

Figure 6.11 shows the ratio of the optimal throughput to the throughput that 802.11

CSMA/CA can achieve. Here the throughput metric isminφ∈Φ fφ and the SINR pro-

tocol model withWithout Acks is used. Qualnet was used to estimate the throughput

of 802.11. RTS/CTS and Qualnet’s automatic rate fallback scheme were used. The

802.11 CSMA/CA throughput was determined by sending data to each destination

at a constant rate (1000 B packets were used). The sending rate was adjusted un-

til the maximum of minφ∈Φ fφ was found. Confidence intervals were generated via

bootstrapping [92] to ensure that the estimated throughput was accurate within

10%.

The topologies generated in Section 6.1.1 are used in this section. Figure 6.11

shows that for networks with a large number of gateways, optimal scheduling can

have a dramatic improvement in the throughput. On the other hand, the simulations

used a standard version of 802.11 CSMA/CA. It is conceivable that if 802.11 is better
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tuned (e.g., by tuning CCA [93]) and a better version of the ARF is used, then the

throughput with 802.11 CSMA/CA could be improved and the relative improvement

provided by optimal scheduling would be reduced.

Figure 6.11 provides a baseline for the range of improvement in throughput

that optimal scheduling can achieve. While it is expected that scheduling results

in a higher throughput, the degree of the improvement and the dependence on the

topology have been unknown. Figure 6.11 indicates when there are a large number of

gateways, scheduling tends to provide tremendous improvements in throughput over

802.11 with CSMA/CA. The scale of this improvement motivates further research

on scheduling for networks with many gateways and perhaps supports the extra

cost required to deploy hardware capable of performing scheduled transmissions.

For example, improvements of this size are large enough that optimal scheduling

will likely still provide considerably higher throughput when factors like overhead

and errors due to synchronization are accounted for and CSMA/CA is well tuned.

On the other hand, Figure 6.11 indicates potential difficulties with improv-

ing the throughput on networks with few gateways. For example, [20] developed

a scheme that achieves at least 1/3 of the optimal throughput (under the condi-

tion that co-channel interference does not arise). Figure 6.11 indicates that such a

scheme will only slightly improve the throughput on networks with a small number

of gateways. However, improvements of that size might also be possible by tuning

CSMA/CA.

6.5 Performance of Searching Algorithms for MWIS

In this investigation, the approximation algorithms Kako and WMIN are

implemented with Matlab. One of the exact methods, maximum weighted clique

developed by Östergård, is implemented with C code. As for the other exact method,

integer programming, two solvers from the Tomlab toolbox are examined. One solver

is called binary programming, and the other solver is called CPLEX which is a mixed
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Figure 6.12: Performance of techniques to compute the maximum weighted inde-
pendent set. Left: The probability of finding the MWIS. Östergård’s
methods, CPLEX, and binary programming are exact methods, and
hence always compute the exact MWIS. Right: The probability of
the found independent set having a weight within 10% of optimal.

integer programming solver. Also, the SINR protocol model with Without Acks is

used here.

Figure 6.12 compares the performance of techniques to compute an (approxi-

mate) maximum weighted independent set for the realistic networks. The left frame

of Figure 6.12 shows that all exact methods always find the optimal MWIS and

the approximation methods have less than 40% probability to compute the optimal

MWIS. Furthermore, the method Kako is a little better than the method WMIN.

When we consider the probability of finding the weighted independent set within

10% of optimal, Kako and WMIN have almost 80% and 60% probabilities, respec-

tively, which are shown in the right frame of Figure 6.12. Therefore, Kako performs

better than WMIN in searching the MWIS.

The average computation time of MWIS is another factor that impacting the

choice of the searching algorithm. Since the results from Chapter 7 show that the

MWIS problem can be solved quite fast with CPLEX method for moderate sized

networks, for example, it takes about 1 sec for the topology with 2048 nodes, it

is not necessary to consider the approximation methods anymore. Therefore, the

CPLEX method is deployed in the following investigation.
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Figure 6.13: (a) Throughput of mesh network infrastructure in a 6x6 block region
for various numbers of wired gateways and various numbers of mesh
routers/destinations. (b) Ratio of the throughput with six wired
gateways and the throughput with one wired gateway. (c) Average
utilization of each gateway.

6.6 The Impact of the Topology on Throughput

Here, the topologies generated in Section 6.1.1 are deployed and the SINR

protocol model with Without Acks is used. Figure 6.13 (a) shows the optimal

throughput (Mbps/destination) for a wide range of topologies. The general trends

are expected. As the number of destinations increases, the data rate per destination

decreases and as the number of gateways increases, the data rate per destination

increases. Recall that there are 36 blocks in the simulated region. Thus, Fig-

ure 6.13 (a) shows that if there is one gateway for every six blocks, and 2.5 mesh

routers/destinations for each block (i.e., 90 destinations in 36 blocks), then the

infrastructure can provide approximately 1.5Mbps per destination.

Also, Figure 6.13 (a) shows that the throughput increases as gateways are

added. A more detailed view of this behavior is given in Figure 6.13 (b). This figure

shows that as more destinations are added, the impact of adding more gateways

increases, however, it increases rather slowly.

Figure 6.13 (c) shows the average utilization of each gateway in the network.

Ideally, each gateway transmits at all times. When there is only a single gateway,

this ideal is nearly achieved. Recall that the communication model used here does
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not utilize ACKs; only one-way communication is required. Note that with TDMA,

even when packets must be transmitted over multiple hops, the gateway is able to

nearly continuously transmit. For example, suppose that the gateway transmits

to node A during the first time slot and to node B during the second time slot.

Furthermore, during the second time slot, node A forwards the packet received

during the first time slot to its neighbor, node C. If node C is far enough away from

the gateway and node B is far enough away from node A, then all transmissions

will succeed. Of course, if node A requires an ACK from node C, this ACK would

likely not be received since the interference from gateway’s transmission to node B

would likely be substantial. Thus, ACKs may decrease the network throughput.

6.7 Conclusion

This chapter evaluates the performance of practical techniques for computing

optimal schedules in multihop wireless networks even when co-channel interference

arises. The algorithms can compute optimal schedules within a few minutes for

networks with 2048 nodes and within a few seconds for networks with 128 nodes.

Node exclusive model, 2-hop node exclusive model and sensing model, which

are widely used in the research, exhibit poor performance because of neglecting co-

channel interference. The SINR protocol model proposed in this work accurately

models the interference and the multi-conflicts can be removed easily.

The performance improvement provided by the optimal scheduling is signifi-

cant if there are a large number of gateways. For example, as compared to 802.11’s

CSMA/CA, optimal scheduling improves performance by a factor between 3 and 11,

with the improvement increasing as the density of gateways increases.
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6.8 Appendix: Construction of Random Wireless Networks

In order to investigate the average computational complexity of the MWIS

problem for optimal scheduling in practical wireless networks, statistics must be

generated from a large number of networks. This investigation focuses on topologies

that might arise in large scale wireless mesh networks. Such infrastructure networks

are composed of wireless routers and gateways, which have both wired and wireless

interfaces. Such networks have densely distributed wireless routers while gateways

are more lightly distributed. The routing forms a forest, where gateways are roots

of the trees.

In this investigation, five parameters are used to characterize a mesh network.

Four of these parameters are the number of the nodes, the density of nodes (i.e., how

many neighbors a node has), the density of the gateways, and the target bit-rate of

links. The propagation environment also plays an important role in the performance

of a network. Thus, in order to fully explore the computational complexity, we

consider three popular propagation environments, namely, the two-ray model, the

two-ray with shadow fading model, and a realistic urban propagation model. Thus,

the propagation model is a fifth parameter that controls the topology. The next

subsections detail the generation of random topology based on these five parameters.

6.8.1 Propagation Models

Propagation is a key aspect of wireless networks. In the two-ray propaga-

tion model, the received signal strength (in dB) at a node that is d meters from a

transmitting node is

P2Ray (d) = 20 log10

µ
λ

4π

¶
+ PTransmitPower [dB]

−

⎧⎨⎩ 20 log10 (d) for d ≤ C

40 log10 (d/C) + 20 log10 (C) for d > C
,
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where C is a parameter that depends on the node height. In the case of hand-held

radios, the height is approximately 1.5m, and C = 225m. Throughout this work,

PTransmitPower = 18 dBm and λ = 0.125m, as is the case for 802.11b/g. When shadow

fading is added, the received signal strength (in dB) at a node that is d meters from

a transmitting node is

P2RayAndShadowing (d) = P2Ray (d) +X

where X is a Gaussian random variable with mean 0 and standard deviation 4 dB

[118]. We assume that nodes are spaced far enough apart that the random part of

the propagation are independent. However, propagation is symmetric [118].

Due to the difference between indoor and outdoor propagation, and due to

wave guide effects of streets, urban propagation is distinct from the random prop-

agation models. Thus, in order to investigate the performance of the complexity

of optimal scheduling in urban areas, the UDel Models Propagation Simulator [90]

was employed. Specifically, for this study, ray-tracing was performed on a 2 km2 re-

gion of downtown Chicago. This computation provided the received signal strength

between any pair of nodes.

Topologies were randomly generated by selecting a subset of nodes from a

large baseline set of nodes. In the case of the two-ray propagation model and the

two-ray with shadowing model, the baseline set of nodes were densely distributed so

that within a 15 km2 region 5000 nodes where distributed. However, for the urban

propagation model, nodes were placed to mimic a large infrastructure network.

Specifically, outdoors, nodes were placed on lampposts throughout the city, and

indoors, enough nodes were placed on each floor so that the entire floor was covered.

In all, the baseline set of nodes included over 7000 nodes positioned throughout the

city.
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6.8.2 Random Topology Generation

Node Selection

Beyond the propagation model, four parameters are used to construct a topol-

ogy, namely, n the number of nodes, r∗ the target bit-rates, ∆ the target number of

neighbors, and NGW the number of gateways. The target bit-rate corresponds to a

specific received signal strength. Letting RSS (r) be the minimum required received

signal strength to decode a transmission at data rate r, then using 802.11g’s coding

and modulation, typical values of RSS are

RSS (6) = −90dBm; RSS (12) = −87dBm;

RSS (18) = −84dBm; RSS (24) = −81dBm;

RSS (36) = −78dBm; RSS (48) = −74dBm;

RSS (54) = −72dBm,

where the data rates are in Mbps. We say that two nodes are neighbors if the

propagation model results in a received signal strength that is above RSS (r∗).

Let N denote the set of nodes in the topology. Initially, N is a single node

selected at random. Then, a node is selected at random among all the nodes that

satisfy 1.) the node has between 1 and ∆ neighbors in N , and 2.) adding the node

to N will not make any node in N have more than ∆ neighbors in N . If no such

node exists, then the process is restarted. If suitable nodes do exist, the process

continues until N has n elements.

Next, gateways are selected. The objective is that the gateways are uniformly

spread throughout the network in the sense that the average distance from a node

to the closest gateway is minimized. This is formulized as follows. Given a set of

gateways, G, a new gateway is added by finding the node, w, that minimizes D (u)

where

D (u) =
X
w∈N

min

µ
d (u,w) ,min

g∈G
d (g, w)

¶
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Algorithm 7 Selecting the Gateways
1: Let G be a randomly selected set of NGW nodes from N .
2: repeat
3: Set G0 = G.
4: Remove the node from G that has been in G for the most iterations.
5: Set G = G ∪ argminw∈N\GD (w).
6: until
7: G0 = G.

where d (u,w) is the distance in hops from node u to node w. Thus, the gateways

are selected in Algorithm 7.

Note that the above is not a convex optimization and hence the final set of gate-

ways might depend on the initial selection of gateways. Thus, the above algorithm

was run ten times and the set of gateways that resulted in the smallest value ofP
w∈N ming∈G d (g, w) was used.

Routing

Once the wireless routers and gateways have been selected, the routing was

determined. As mentioned above, the routing forms a forest, where each gateway is

a root of a tree and each wireless router is in exactly one tree. While there are several

approaches for routing, this investigation used a max-flow-based, interference aware

routing.

The first step in forming routes is to identify the set of potential links, their

bit-rates, and the links that they interfere with. Let x denote a link with transmitter

xt and receiver xr and let Px be the received signal strength at the receiver. The

bit-rate used by link x is denoted r (x) and is given by

r (x) := max {r : Px − PGuard > RSS (r)} ,

where PGuard is used as a buffer to reduce sensitivity to interference. This study

used PGuard = 3 dB. If no such bit-rate exists (i.e., Px − PGuard < −90dBm),
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then the link is removed from consideration. Given the bit-rates, for each link x,

the set of conflicting links, χ (x) can be found, as described in Section 4.2.4.2. The

maximum-flow routing is detailed in Section 6.1.2.1.
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Chapter 7

PRACTICAL COMPLEXITY OF SOLVING MAXIMUM

WEIGHTED INDEPENDENT SET

7.1 Introduction

Optimal scheduling requires solving a graph theoretic problem known as the

maximum weighted independent set (MWIS) problem. Thus, the complexity of op-

timal scheduling is tied to the complexity of MWIS problem. This chapter examines

the computational complexity of solving MWIS in practical wireless networks.

In general, the MWIS problem is NP-hard [94]. Moreover, it is NP-hard to

approximate the MWIS with an approximation ratio of n1−ε, for ε > 0, where n is the

number of vertices in graph [95]. On the other hand, there are many classes of graphs

where the MWIS problem has polynomial complexity. For example, MWIS can be

found in polynomial time of perfect graphs[71], disk graphs [72], circle graphs [77],

trees [75] and as well as many families of graphs that are free of particular subgraphs

[73, 96]. The MWIS problem is also solvable in polynomial time on line graphs. In

wireless scheduling, line graphs arise when there is no co-channel interference.

Beside the restrictive case where there is no co-channel interference and the

case of networks restricted to one-dimension (e.g., roads), it is unknown whether the

MWIS problems that arise in practical wireless scheduling have any special prop-

erties that make them solvable in polynomial time. Nonetheless, through extensive

computational experiments we have found that the MWIS that arises in practical

wireless scheduling can be solved quickly. As shown in Section 7.3, the MWIS that
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arises when computing the optimal schedule for a wireless network with 2048 nodes

can be computed in approximately one second. This work will also demonstrate

that the number of nodes and the average degree of the conflict graph (defined in

Section 5.2.2) are good predictors of the computation time. Other factors such as

node density and bit-rate impact the average degree of the conflict graph, and hence

do not need to be considered beyond their impact on the degree of the conflict graph.

Moreover, computational evidence indicates that the computation time grows poly-

nomially with the size of the network if the mean degree of the conflict graph is

fixed.

The remainder of this Chapter proceeds as follows. The next section pro-

vides a brief overview of problems with worst-case exponential complexity that have

been found to be easily solved in practice. Sections 7.3 - 7.5 present the results

of computational experiments involving over 10000 topologies. Finally Section 7.6

provides concluding remarks. Note that the topologies generated in Section 6.1.2

are deployed, the SINR protocol model with Unsynchronized ACKs is used, and the

ILP with CPLEX solver described in Section 5.2.4.1 is used to solve the MWIS in

this investigation.

7.2 Worst-Case and Average Complexity

The results of the computational experiments presented below indicate that

optimal scheduling is practical. In particular, the MWIS problem that arises in

wireless scheduling can be quickly solved in practice. These results are not in contra-

diction with earlier proofs of NP-hard, but rather are well aligned with the practical

computational complexity in a wide range of other NP-hard or exponential problems.

For example, let us consider linear programming. In [97], it is shown that in the

worst-case, the computational complexity of the simplex algorithm is exponential

in the size of problem. On the other hand, there is an abundance of evidence that

in practice, the computational complexity of the simplex algorithm is m2×n where
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m is the number of constraints and n is the number of variables [70]. Moreover,

interior point methods have been developed that have polynomial complexity for

the worst case. However, despite the fact that interior point methods have a better

worst-case performance, state-of-the-art solvers such as CPLEX [88] and XPress [98]

use the simplex method. In summary, there may be a substantial difference between

worst-case computational complexity and practical computational complexity.

While there are many ways to quantify practical computational complexity,

one common approach is to use the average complexity [99]. By this definition of

complexity, several problems that are NP-hard in the worst case, are polynomial

on average. For example, in graph theoretic problems, average complexity is the

complexity averaged over solving the problem over random graphs. A random graph

is one where an edge between any two vertices exists with probability p. Under this

definition, it has been shown that the average complexity of finding Hamilton Cycles

and solving the edge coloring problem are polynomial [100, 101]. In the case of the

maximum independent set (MIS) problem, there exists an algorithm with average

complexity of
Pn

k=1

¡
n
k

¢
2−k(k−1)/2 = O

¡
nlog(n)

¢
on random graphs with p = 1/2,

where there are n nodes in the graph [102].

The SAT problem, which is NP-hard in general, is another example of a

significant difference between practical computational complexity and worst-case

computation complexity. While the authors are not aware of any proofs on average

complexity, several researchers have developed algorithms that can quickly solve

randomly generated problems [103, 104, 105, 106]. Due to the importance of the

SAT problem, the average complexity of the SAT problem has been extensively

studied. One finding is that the distribution of the problems plays an important

role in the average complexity of SAT problem [107].

The impact of the distribution is troublesome since it indicates that the

complexity averaged over a specific distribution of problems might be significantly
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Figure 7.1: The time to compute the MWIS versus the number of nodes in the
network. (a), (b), and (c) show this relationship when the propagation
is the urban propagation, the two-ray model, and the two-ray with
shadow fading model, respectively. In all cases, the target number
of neighbors is 6, the target bit-rate is 24 Mbps, and the number of
gateways is the number of nodes divided by 16.

different from the average complexity when averaged over problems that appear

in practice. For this reason, this work investigates the practical complexity of the

MWIS problems that arise in computing optimal schedules for wireless networks.

7.3 Computation Time as a Function of the Number of Nodes in the

Network - The Low Degree Case

Figure 7.1 (a), (b), and (c) show the average time to solve (5.1) for urban

propagation, the two-ray propagation model, and the two-ray with shadowing prop-

agation model, respectively. These computation times1 were averaged over each

iteration of Algorithm 1 and averaged over 40 randomly generated topologies. For

small topologies, the computation time is quite small. Randomness due to memory

1 All computations were run on a machine with two Intel E5440 CPUs and 16GB RAM
using Matlab v 7.2, and CPLEX v 10 with the Tomlab interface to CPLEX. However,
at all times, 8 computations were solved simultaneously. Hence, the computation
times shown correspond to the time on a single core (i.e., the MWIS problem was not
parallelized across cores).
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management and other high priority tasks, small computation times are significantly

influenced by noise. Therefore, for topologies with fewer than 256 nodes, each time

that the ILP program was to be solved, it was repeatedly solved ten times. The

computation time was then the average of these ten times. Figure 7.1 also shows

the 95% confidence intervals, which were found with bootstrapping. When generat-

ing these topologies, the target number of neighbors, ∆, was equal to 6, the target

bit-rate was set to 24Mbps, and the number of gateways was the number of nodes

in the network divided by 16.

Three conclusions can be made from Figure 7.1. First, the time to solve the

MWIS is quite small, with 2048 node topologies taking approximately one second.

Clearly, the statement that the MWIS can only be solved for trivial networks is

incorrect. Second, it appears that in practice, the time to compute the MWIS

grows polynomially with the size of the network. Specifically, for the topologies

shown in Figure 7.1, we have

Time to find a MWIS for ∆ = 6 (7.1)

≈ A× nB + To sec.

where (A,B, To) is (10−6.7, 1.97, 0.0095), (10−6.7, 1.85, 0.0095), (10−6.1, 1.75, 0.0095)

for the urban propagation, the two-ray model, and the two-ray with shadowing

model, respectively. This relationship between computation time and topology size

is also shown in Figure 7.1. However, as will be shown in the following sections, this

behavior is unique to networks that have a low degree (i.e., ∆ is small). A third

conclusion drawn from Figure 7.1 is that the computational complexity does not

greatly depend on the propagation model. Specifically, the computation times for

different propagation models are within 10%.

Note that in (7.1), To = 0.0095 sec., for all types of propagation. We suspect

that it takes approximately 9.5 msec to load the CPLEX optimizer (which is a DLL)

and to begin solving the MWIS problem.
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7.4 Impact the Mean Degree of the Conflict Graph

Figure 7.1 shows a relationship between the computation time and the size

of the network under a specific type of topologies. We seek to understand this

relationship for a wider range of types of topologies. This section will present results

from computational experiments that indicate that

Time to find a MWIS− To
Mean degree of the conflict graph

≈ α× nβ, (7.2)

where α and β only depend on the propagation environment. This result implies

that in terms of the time to find a MWIS, the mean degree of the conflict graph

encapsulates many of the parameters used for generating topologies, namely, the

number of gateways, the target bit-rate, r∗, and the target number of neighbors, ∆.

We take two steps to show that (7.2) is a good model for the computation

time. First, we fix n, in which case (7.2) implies that

Time to find a MWIS− To (7.3)

≈ K ×Mean degree of the conflict graph,

where the constant K is dependent of the number of nodes, but K is independent

of the other parameters of the topology, namely, the number of gateways, the target

bit-rate, r∗, and the target number of neighbors, ∆. The next two subsections will

explore the relationship between K and these other topology parameters.

In the second step to demonstrating (7.2), we will show that K is polynomial

in n, that is,K = α×nβ for some α and β, where α and β depend on the propagation

model. This relationship is explored in Section 7.4.3.

7.4.1 TheMean Degree of the Conflict Graph, the Number of Gateways,

and the Number of Neighbors

Figure 7.2 shows the relationship between the mean degree of the conflict

graph and the computation time for different numbers of gateways and different
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Figure 7.2: The mean time to compute the MWIS versus the mean degree of
the conflict graph for several topologies. (a) Shows the case where
the topologies have 128 nodes, 16 gateways, and the target number
of neighbors, ∆ vaires from 3 to 24. (b) Shows the case where the
topologies have 512 nodes, 16, 32, and 64 gateways, and ∆ vaires from
3 to 24. (c) Shows the case where the topologies have 1024 nodes, 64
gateways, and ∆ vaires from 3 to 24.

numbers of target neighbors, ∆, but with the target bit-rate fixed at 24 Mbps.

Here, urban propagation is used and, as above, each point is averaged over 40

topologies (both the mean degree of the conflict graph and mean computation time

are averaged over 40 topologies). As can be observed, there is an approximately

linear relationship between the computation time and the mean degree of the conflict

graph. Specifically, the computation time is approximately given by (7.3), where

K is 0.00018, 0.0012, and 0.008 for 128, 512, and 1024 node networks, respectively.

These models are also shown in Figure 7.2.

Figure 7.2 also shows the computation time for particular values of the topol-

ogy parameters. As expected, as ∆, the target number of neighbors in the wireless

network, increases, the mean degree of the conflict graph increases. Figure 7.2 (b)

shows the computation time for different numbers of gateways. As can be observed,
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Figure 7.3: The mean time to compute the MWIS as a function of the mean degree
of the conflict graph for different topologies where the topologies are
generated with different target bit-rates.

as the number of gateways increases, the mean degree of the conflict graph slightly

decreases, leading to a slight reduction in the computation time. Moreover, notice

that the computation times for a larger number of gateways tends to be slightly

below the linear fit, while a smaller number of gateways cases tend to be slightly

above the linear fit. Nonetheless, the linear relationship between the mean degree of

the conflict graph and the computation time provides a reasonable approximation

for a wide range of gateways.

7.4.2 The Mean Degree of the Conflict Graph, the Target Bit-Rate, and

the Number of Neighbors

The topologies shown in Figure 7.2 used a target bit-rate of 24Mbps. Figure

7.3 shows the relationship between the mean degree of the conflict graph and the

time to compute the MWIS for a wide range of target bit-rates and different numbers

of gateways. In this case, where urban propagation was used, there were 512 nodes
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in the topology, and the target number of neighbors was set to 6. This figure

shows that the mean degree (and computation time) increases with the target bit-

rate. The reason for that the mean degree of the conflict graph increases with the

target bit-rate is that higher bit-rates are more susceptible to interference. For

example, 54 Mbps requires 23 dB of SINR, while 6 Mbps only requires 5 dB of

SINR. Consequently, transmissions that are several hops away will interfere with

high bit-rate transmissions, whereas only nearby transmissions will impact low bit-

rate transmissions. Since the target number of neighbors is held fixed, links in

topologies where a high target bit-rate is used will interfere with considerably more

links than do links in topologies with low target bit-rates.

The linear fit shown in Figure 7.3 is the same one shown in Figure 7.2, i.e.,

(7.3) with K = 0.0012. This further confirms the linear relationship between the

mean degree of the conflict graph and the time to compute the MWIS.

7.4.3 Time to Compute a MWIS and the Mean Degree of the Conflict

Graph

The previous sections provide a strong indication that (7.3) is a good model

for the computation time, where K only depends on the number of nodes. While

Figures 7.2 and 7.3 only show the case for urban propagation. However, the plots are

similar for the two-ray propagation model and the two-ray with lognormal shadowing

propagation model.

Figure 7.4 (a), (b), and (c) show K as a function of the number of nodes

for the urban propagation model, the two-ray propagation model, and the two-

ray with lognormal shadowing propagation model, respectively. These plots also

show the model K = αnβ, where (α, β) = (1.77× 10−8, 1.88) , (1.09 ×10−7, 1.64),

(7.78× 10−8, 1.75), for the three types of propagation, respectively. As can be ob-

served, this model provides a high quality of fit. Thus, we conclude that with the

computers and algorithms used in this investigation, the time to solve the MWIS
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Figure 7.4: The relationship between K, the parameter in (7.3), and the number
of nodes in the network. (a) is for urban propagation (b) is for the
two-ray propagation model, and (3) is for the two-ray propagation
model with lognormal shadow fading.

problem associated with optimal scheduling in practical wireless networks can be

modeled with (7.2).

7.5 The Mean Degree of the Conflict Graph

It is important to note that (7.2) does not imply that the time to find a

MWIS grows like nβ. Specifically, as Figures 7.2 and 7.3 show, the mean degree

of the conflict graph also varies with the number of nodes. Thus, the scaling of

the computation time depends on how the network is scaled, or more specifically, it

depends on how this scaling impacts the mean degree of the conflict graph. In the

case of the urban propagation, the time to compute the MWIS grows like nβ with

β = 1.88 only if the mean degree of the conflict graph is somehow held constant as

the size of the network grows. However, the mean degree of the conflict graph varies

in a complicated way, and hence there does not appear to be any simple relationships

between the number of nodes and the mean degree of the conflict graph.

Figure 7.5 shows how, in the case of the urban propagation, the mean degree

of the conflict graph varies as the number of nodes increases, but the gateway density

is held constant and ∆, the target number of neighbors, is held constant. For this
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Figure 7.5: Relationships between the number of nodes and the mean degree of
the conflict graphs.

type of scaling of the topology, it is difficult to draw any definitive conclusions

about the relation between the number of nodes and the mean degree of the conflict

graph. For example, for ∆ = 24 and ∆ = 18, the mean degree clearly increases with

the number of nodes. Thus, the time to find a MWIS increases faster than n1.88.

However, for other values of ∆, the mean degree of the conflict graph appears to

reach a plateau.

Note that the models shown in Figure 7.1 do not have the same exponent as

the one given in the previous section. These can be reconciled by recognizing that

the mean degree of the conflict graph can vary with n. For example, in the urban

propagation case shown in Figure 7.1, the computation time grows like n1.97, thus

in order for (7.2) to hold with the parameters given above, we must have that for

the topologies used to generate Figure 7.1 (a)

A× n1.97

mean degree of the conflict graph
= 1.77× 10−8n1.88,

which implies that the mean degree of the conflict graph must grows like n0.09.

Similarly, for the two-ray model and the two-ray with shadowing model, the models

shown in Figure 7.1 (b) and (c) can be reconciled with (7.2) if the mean degree of
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Figure 7.6: Possible Venn diagram of maximum independent set (MIS) problems,
3-SAT problems, and scheduling problems.

the conflict graph is approximatelyO (n−0.21) and O (n0.0), respectively. Considering

Figure 7.5, such a variation is plausible, especially, when ∆ is small, as it is in the

case of Figure 7.1.

7.6 Conclusions

This work studied the practical computational complexity of the maximum

weighted independent set (MWIS) problem that arises in optimal scheduling in

wireless networks. In contrast to folklore, the MWIS problem is solvable in many

practical wireless scheduling problems. Specifically, by examining over 10000 ran-

domly generated topologies, it was found that the time to compute the MWIS grows

polynomially with the number of nodes and linearly with the mean degree of the

conflict graph. Moreover, the mean time to solve the MWIS problem for networks

with 2048 nodes was approximately one second.

While this result might appear to be in conflict with prior research on the

complexity of scheduling, it is not. First, there are a wide range of problems that

have a worst-case complexity that grows exponentially with the size of the problem,

and yet in practice grow polynomially with the size of the problem. Second, prior

research on the complexity of scheduling relied on the relationship between the 3-

SAT problem and the MWIS problem. However, it is well known that in many cases
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the 3-SAT problem can be quickly solved [103, 104, 105, 106]. Moreover, the MWIS

problem that arises in practical scheduling is particular subset of MWIS problems.

The relationship between practical scheduling and the 3-SAT problem is not clear.

Figure 7.6 show a possible Venn diagram of the set of problems. Note that it is

unknown if there is any overlap between difficult 3-SAT problems and the MWIS

problems that arise in practical wireless networks. The computational experiments

in this work indicate that there is not a significant overlap.

An important consequence of this work is that the ability to quickly solve

MWIS problems allows optimal schedules to be quickly found. In previous work,

the perceived practical intractability had been circumvented by using suboptimal

methods or by making strong assumptions about interference.

111



Chapter 8

OPTIMAL ROUTING

8.1 Introduction

Researchers have been investigating scheduling techniques for at least 25 years

[30], and it was shown that in the worst case determining the optimal schedule is

NP-hard [108]. Consequently, joint optimal scheduling and optimal routing has

appeared to be impractical. However, we propose an algorithm that can efficiently

compute optimal schedules even while accommodating co-channel interference.

With the ability to quickly compute optimal schedules, optimal routing (with

optimal scheduling) can be investigated. In the worst-case, the number of routes

between a source and destination increases exponentially with the size of the net-

work. Thus, it is not tractable to directly optimize over all routes. Instead, an

iterative scheme is developed where paths are added only if they are guaranteed to

improve the throughput. However, guaranteed optimal routing remains computa-

tionally complex. Thus, an approximate algorithm is developed. The performance

of this algorithm is compared to the optimal algorithm for several topologies and it

is found to result in the same throughput as the optimal routing.

We also explore several aspects of the behavior of the proposed routing in

realistic mesh networks. For example, it is found that when compared to a least hop

routing algorithm, the approximate algorithm increases throughput by as much as a

factor of two. However, the typical improvement is approximately 60%. Considering

that scheduling (with least hop routing) improves throughput over 802.11’s MAC
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by a factor between 4 and 10 (depending on the density of gateways), we conclude

that optimal routing and scheduling typically provide an improvement of a factor

between 6 and 15 over a 802.11-based deployment.

As a comparison, we consider a max-flow based routing algorithm that is

similar to the one developed in [40] (except optimal scheduling is used, whereas in

[40], a greedy scheduling algorithm is used). The approximate routing algorithm

typically yields between 20% and 35% improvement in throughput over this max-

flow based algorithm. Other aspects of routing explored include the path length and

the performance of a single path quantization of optimal multipath routing, and the

performance when subjected to time varying offered load. It is important to note

that the topologies considered in this work were developed with the UDelModels

urban wireless network simulator, which realistically models wireless propagation in

urban areas [90].

The remainder of the chapter proceeds as follows. In the next section some

notation and the problem definition are given. Section 8.3 develops an algorithm

for optimal routing while Section 8.4 develops an approximation of optimal routing.

Then, Section 8.5 and 8.6 explore the behavior of these routing algorithms in realistic

mesh networks. Finally, concluding remarks are provided in 8.7. We must notice

that Section 6.1.2.1 develops a max-flow based routing algorithm, which is clearly

suboptimal, but computationally efficient.

8.2 Notation and Problem Definition

A router-to-router connection is denoted by φ, with Φ denoting the set of all

connections. A connection may make use to several flows with each flow using a

different path; the kth path for connection φ is denoted by (φ, k). The data rate

of flow (φ, k) is denoted by fφ,k, and the path followed by flow (φ, k) is denoted

byP (φ, k). The set of paths used by connection φ is denoted with P (φ), i.e.,

P (φ) = {P (φ, k) : k = 1, ..., |P (φ)|}, where |P (φ)| is the number of paths used by
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connection φ. The set of all considered paths is P. Using this notation, the total

data rate over connection φ is
P|P (φ)|

k=1 fφ,k, and the total data rate sent over link x isP
{(φ,k)|x∈P (φ,k)} fφ,k, where {(φ, k) |x ∈ P (φ, k)} is the set of flows that cross link x.

A schedule is a convex combination of assignments. Specifically, a schedule

is a set {αv : v ∈ V} where
P

v∈V αv ≤ 1 and αv ≥ 0. With this notation, the

total data rate that the schedule {αv : v ∈ V} provides over link x is
P

v∈V αvRxvx.

Then, the throughput optimization problem is

maxG
³
f
´

(8.1)

subject to:X
{(φ,k)|x∈P (φ,k)}

fφ,k ≤
X
v∈V

αvR (v, x) for each link x (8.2)

X
v∈V

αv ≤ 1 (8.3)

0 ≤ αv for each v ∈ V, (8.4)

where f is the vector of flow rates. Several different functionsG are possible. Popular

ones include G
³
f
´
=
P

φ∈Φwφ log (
P

k fφ,k) and G
³
f
´
= minφ∈Φwφ

P
k fφ,k. In

both cases, wφ is the administrative weight for router-to-router connection φ.

8.3 Optimal Routing

A naive approach to optimal routing is to let each connection φ use all possible

routes. That is, for each φ, P (φ) = {P (φ, k) : k = 1, 2, ...} is the set of all possible

paths between the source and the destination of connection φ. With this set of

paths, the optimal schedule can be found. The schedule will determine the portion

of the flow
P|P (φ)|

k=1 fφ,k that uses path P (φ, k). In this way, optimal scheduling

also performs optimal routing. While such an approach is possible in theory, in

practice, it is not feasible since the number of all possible paths between a source

and destination grows exponentially with the size of the network.
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As an alternative, we consider adding paths only when they will improve the

performance. Specifically, suppose that connection φ uses the set of paths P (φ).

Now consider the candidate path P (φ, k+) /∈ P (φ). This path should be added to

the set of considered paths only if the addition of this path improves the throughput.

The question of whether including the path P (φ, k+) into the set of considered paths

will increase the network throughput is answered by the following.

Proposition 23 Let P (φ, k+) /∈ P (φ) be the path of a candidate flow potentially to

be added for connection φ. Furthermore, let P (φ, ko) ∈ P (φ) be such that fφ,ko > 0.

Then, adding the candidate path P (φ, k+) to P (φ) will increase the throughput if

and only if X
x∈P (φ,k+)

µx <
X

x∈P (φ,ko)

µx, (8.5)

where µx is the Lagrange multiplier associated with constraint (8.2) that arises from

solving Problem (8.1) without the inclusion of the path P (φ, k+).

The proof of Proposition 23 is addressed in Section 8.8.1. Employing the

economic interpretation of Lagrange multipliers, Proposition 23 says that path

P (φ, k+) should be included into the set of considered paths if its end-to-end costP
x∈P (φ,k+) µx is less than the end-to-end cost of the currently used flows.

Following the approach of the proof of Proposition 23, it is straightforward

to prove that data is only sent down paths where the cost is minimum.

Proposition 24 If
P

x∈P (φ,k1) µx <
P

x∈P (φ,k2) µx, then fφ,k2 = 0.

Corollary 25 If fφ,k1 > 0 and fφ,k2 > 0, then
P

x∈P (φ,k1) µx =
P

x∈P (φ,k2) µx.

Since Problem (8.1) is convex, it is straightforward to show that if there does

not exist a path that improves the throughput, then the current routing is optimal.
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Algorithm 8 Optimal Routing
1: Set m = 0, then select an initial set of paths P(0) and a empty new path

P (φ, k+).
2: repeat
3: Add this path P (φ, k+) to the set of considered paths for connection φ, and

set m = m+ 1.
4: Remove any unecessary paths from consideration.
5: Compute the optimal schedule for the set of Considered paths P(m) and get

the Lagrange multiplers µx associated with Constraint (8.2).
6: Search for a path P (φ, k+) /∈ P(m) that satisfies (8.5).
7: until
8: No such path exists.

Thus, Algorithm 8 can be used to incrementally add paths until no further improve-

ment is possible, that which point the optimal throughput has been determined.

Also, Figure 8.1 shows the flow chart for Algorithm 8.

There are several challenges in applying Algorithm 8. A critical one is related

to determining µx for all links. This issue is addressed in the next section. Other

important issues are related to removing unnecessary paths as discussed in Step 4.

One approach is to remove paths that carry no data. That is, if the optimal schedule

dictates that fφ,k = 0, then the path P (φ, k) can be removed from consideration

without impacting the throughput. However, as discussed in the next sections, in

some cases, the removal of paths is more complicated.

In [109], the idea of updating routing based on the sum of the end-to-end

Lagrange multipliers was investigated for wired networks. However, the focus there

was on single path routing and on the conditions under which single path routing is

optimal.
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Figure 8.1: Algorithm for optimal routing

8.4 Evaluating the Path Cost

8.4.1 Approaches to Evaluating the Path Cost

One significant drawback of Algorithm 8 is that it requires µx to be known

for each link x. However, the scheduling algorithm will only compute µx if the set

of all considered paths P is such that for each x there exists a path P ∈ P such

that x ∈ P . There are three ways to address this drawback. First, Algorithm 8 can

be applied but neglecting links that are not used by any path in P. The result will

be suboptimal. Specifically, only links considered by the initial routing will be used

when the algorithm terminates. Based on realistic simulations (see Section 8.5 for

a discussion of the simulation set-up), we have found that this approach performs

poorly, especially when the network is dense (i.e., when there are many links that

have high channel gain and are not included into the routing).
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A second approach to accommodating Algorithm 8’s need for µx for all links

is to ensure that the routing at each iteration is such that there is at least one route

crossing each link. This brute force approach suffers from high computational com-

plexity since there may be a large number of links. Since some links have very low

channel gain, and hence, it can be assumed that such links would not be utilized in

optimal routing. Thus, the number of unidirectional links is considerably smaller

than N (N − 1), which is the maximum number of directional links. Nonetheless, in

dense mesh networks, there are a very large number of links, limiting the applica-

bility of the brute force method. On the other hand, this approach is guaranteed to

yield the optimal routing.

A third approach is to find an upper bound, µ̄x such that µx ≤ µ̄x for the

links that are not included in any path and µ̄x = µx for links that are included in

at least one path. If such a bound is known (one is given in the next section), then

from Proposition 23 we have the following.

Corollary 26 (Sufficient Condition to Include a Path) Let µx ≤ µ̄x. Let

P (φ, k+) /∈ P (φ) be the path of a candidate flow potentially to be added to connection

φ. Furthermore, let P (φ, ko) ∈ P (φ) be such that fφ,ko > 0. Then, adding the

candidate path P (φ, k+) to P (φ) will increase the throughput ifX
x∈P (φ,k+)

µ̄x <
X

x∈P (φ,ko)

µx. (8.6)

Note that since the path P (φ, ko) is already included in P, µx is known for

all x ∈ P (φ, ko), and hence, the right-hand side of (8.6) can be computed. Of

course, the drawback of using a bound µ̄x is that some paths P (φ, k
+) might satisfy

(8.5), but not (8.6). Such paths would not be included into P. Therefore, replacing

condition (8.5) with condition (8.6) in Algorithm 8 results in suboptimal routing.

On the other hand, at each iteration of Algorithm 8, more paths are added to P.

118



Algorithm 9 Heuristic for Removing Paths from Consideration

The path P (φ, k) is not removed from the set of considered paths if any of the
following hold.
0: The path P (φ, k) was added to the set of considered paths within the past
M iterations.
1: fφ,k 6= 0 during at least one of the past M iterations.
2: There exists a link y ∈ P (φ, k) such that y /∈ P (ϕ, j) for any other flow
(ϕ, j) and µy has been used in computing the upper bound µ̄z for some link z
at least once during the past M iterations.

Algorithm 10 (Sub)Optimal Routing
Use Algorithm 8 with Condition 8.5 replaced with 8.6, where µ̄x is computed
with 8.7, and Algorithm 9 in Step 4 of Algorithm 8.

Thus, if a path is incorrectly not added due to the inaccuracy of µ̄x, it might be

added at later iterations once µx is determined for more links.

The performance of Algorithm 8 with condition (8.6) can be improved by

adjusting when paths are removed in Step 4. On the one hand, if more links that

are included in the P, then µx is known for more links x, and hence the decision

of which paths to include can be made more accurately. On the other hand, the

complexity of the scheduling increases with the number of links included into the

routing. Thus, Algorithm 9 is developed to determine when paths should be removed

from considerations. Roughly speaking, Algorithm 9 removes paths after they have

not been used by the routing algorithm in any way for more than M iterations. As

demonstrated in Section 8.5, M = 5 works well. In summary, as an alternative to

ensuring that each link is used by some route, Algorithm 10 is used.

8.4.2 An Upper Bound on µx

Let L be the set of links used in any path, i.e., L ={x :there exists a P ∈ P

such that x ∈ P}. Thus, for each x ∈ L, µx is determined by the scheduling. Denote

by CG [L] to be the conflict graph induced by the links L. Furthermore, the sub-

graph of the conflict graph induced by removing link x is denoted with CG [L\x]. Rx
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is the data rate over link x when there are no links y ∈ χ (x) are transmitting. Let

MWIS (CG [L]) denote the links in the maximum weighted independent set. Simi-

larly, let MWIS (CG [L\ ({z} ∪ χ (z))]) be the set of links in a maximum weighted

independent set with links L but excluding link z and all links in conflict with z.

Employing this notation, we have the following.

Proposition 27 Let z /∈ L, then µ̄z ≥ µz where

µ̄z =

⎛⎝λ−
X

x∈MWIS(CG[L\({z}∪χ(z))])

Rxµx

⎞⎠ /Rz. (8.7)

The proof of Proposition 27 is in Section 8.8.2. The economic interpretation

of Lagrange multipliers can be used to intuitively explain (8.7). Specially, µx is the

price to transmit a bit across link x. Let v ∈ {0, 1}L be an assignment without

conflicts (i.e., vx = 1 implies vy = 0 for all y ∈ χ (x)). Then the revenue per

second generated by this assignment is
P

xRxµxvx. It can be shown that the best

assignments are those that achieve λ =
P

xRxµxvx [110]. Thus, the network is

"willing" to multiplex between any assignments as long as its revenue per second is

λ. Thus, the network is willing to allow transmission over z if the price per bit to

transmit across link z is (8.7).

While Proposition (27) yields a useful bound on µ, it requires the computation

of a maximum weighted independent set. While we have found that in realistic

networks, MWIS problem can be computed quickly.

8.5 Computational Experiments

In this section the throughputs provided by different routing algorithms are

compared. In all cases, optimal scheduling is used. Hence, only the routing is

changed. In the following computational experiments, the throughput metric is

G
³
f
´
= minφ∈Φ wφ

P|P (φ)|
k=1 fφ,k. However, the results forG

³
f
´
=
P

φ∈Φwφ log(
P|P (φ)|

k=1 fφ,k)

have been examined and yield qualitatively similar results.
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8.5.1 Simulated Urban Mesh Networks

The topologies generated in Section 6.1.1 are deployed in this investigation.

The 6×6 city block regions were randomly located in a 2 km2 region. Various nodes

densities were investigated. Specifically, the number of gateways was 1, 2, 3, 6 and

the number of wireless routers was 18, 36, 54, 72, and 90. The wireless routers and

gateways were uniformly distributed throughout the 6×6 block region. Ten samples

of each topology were generated (hence, 200 topologies in total).

In these experiments, all traffic flow from gateways to destinations (i.e., down-

stream traffic), where each mesh router in the topology was a destination of a flow.

The baseline routing uses single path of least hop where each link had a receiver

signal strength of at least 55 dBm. Among paths with the same number of hops,

the path selected was the one that had the highest minimum link channel gain,

where the minimization is over each hop along the path. Each flow originates at the

gateway such that the best route from the gateway to the destination of the flow is

no worse than any route from any other gateway in terms of the minimum channel

gain along the route.

8.5.2 Comparison of Algorithms

As discussed in Section 8.4, Algorithm 8 yields optimal routing if the La-

grange multiplier for each possible link in the network is always included into some

path. Typically, there are many possible links in the network, hence, this approach

is computational complex. Algorithm 10 is less computational complex, but is sub-

optimal. On the other hand, since Algorithm 9 is conservative in removing a path

from the set of considered paths, Algorithm 10 tends to include a fairly large number

of links, and hence has the potential to accurately determine which paths to include.

Figure 8.2 compares the throughput found by these algorithms for topologies

with 18 and 36 mesh routers and with 1 and 3 gateways. For each number of

routers and gateways, ten samples were considered (hence, 40 topologies in total
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Figure 8.2: Throughput found from optimal and suboptimal routing for various
urban topologies.

were considered). As can be observed, Algorithm 10 yields the same throughput

as the optimal algorithm. We have found that the Algorithm 9 is critical to the

performance of Algorithm 10. On the other hand, Algorithm 10 with Algorithm

9 tends to include a large number of links. Nonetheless, it is considerably more

efficient than including all possible links, and hence optimal routing with all possible

links is not considered in the remainder of this work. Nonetheless, since we have

not verified that Algorithm 10 is indeed optimal for all topologies, the throughput

found by Algorithm 10 is referred to as (sub)optimal.

8.5.3 The Impact of Optimal Routing

The left-hand side of Figure 8.3 shows the improvement in the throughput

of (sub)optimal routing as compared to the initial least hop routing. As can be

observed, optimal routing can significantly improve the throughput. However, we

note that this improvement is far less than the improvement of optimal scheduling

over 802.11 (which is between a factor of four and ten on the same topologies).

Nonetheless, a 20 - 75% improvement in throughput is significant.
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Figure 8.3: The median of the ratio of the throughput with (sub)optimal routing
and the throughput with the least hop routing (left) and max-flow
routing (right). Also shown is the maximum and minimum value of
the ratio when there are three gateways. The maximum and minimum
for other numbers of gateways are similar.

The right-hand side of Figure 8.3 shows the throughput improvement of

(sub)optimal throughput and the throughput that results from using max-flow based

routing described in Section 6.1.2.1. Comparing the left and right-hand sides of

Figure 8.3, it can be observed that max-flow routing provides significantly more

throughput than the least hop routing. However, (sub)optimal routing typically

provides 20 - 35% higher throughput than max-flow based routing. On the other

hand, max-flow based routing (with even optimal scheduling via Algorithm 1) is

quite efficient and can be computed in tens of seconds for the moderate size of

topologies considered here.

As a brief aside, consider Figure 8.4, which we compare the optimal schedul-

ing of Algorithm 1 and the greedy scheduling presented in [40] along with max-flow

based routing. It can be observed that in the topologies considered, optimal schedul-

ing increases the throughput by a factor between 50% and 2.5.
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Figure 8.4: Median ratio of the throughput with max-flow routing and optimal
scheduling and the throughput with max-flow routing and greedy
scheduling from [40]. The maximum and minimum ratio is shown
in the case of three gateways.

8.5.4 Path Length

It is often claimed that high performance can be achieved by taking many

short hops where, since each hop is short, and hence has utilized a good channel, each

hop can support high bandwidth. While a single short hop can proceed at a high data

rate, if a connection requires many short hops, then it will require many transmis-

sions, which will increase self-interference and interference with other connections.

In this way, perhaps shorter paths and longer hops might be preferable [111].

Figure 8.5 shows the average number of hops for different routing schemes.

In general, least hop routing uses the shortest paths (as expected), and (sub)optimal

routing uses the longest paths. In the case of one gateway in a 6×6 city block region,

(sub)optimal routing uses significantly longer paths than least hop paths. As the

density of gateways increases, all path lengths decrease (since routers are closer

to some gateway). In order to better compare the path lengths at high gateway

densities, Figure 8.6 shows the mean ratio of the path lengths. Observe that the

path difference in path lengths decreases as the gateway density increases. However,

(sub)optimal routing still uses considerably longer paths than least hop routing.
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Figure 8.6: Left: Median of the ratio of the path lengths from least hop routing
and path lengths from (sub)optimal routing. Right: Median of the
ratio of the path lengths from of max-flow based routing and path
length from (sub)optimal routing.

Note that since multipath routing is used and since the scheduling may assign

small data flow to some paths, the path lengths used in Figure 8.5 and 8.6 are

weighted by the amount of data flow that crosses the path. Specifically, the path

length for connection φ is 1
|P (φ)|
k=1 fφ.k

P|P (φ)|
k=1 fφ,k (|P (φ, k)|− 1), where |P (φ, k)|− 1

is the path length of path P (φ, k).
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Figure 8.7: Fraction of connections that use multiple paths.

8.5.5 Multipath versus Single Path Routing

There has been extensive work on multipath routing (e.g., [112] and [113]).

One motivation for using multipath routing is that multiple paths can increase ro-

bustness to disconnection and improve load balancing. It is expected that load

balancing can increase throughput. While there is some evidence of this behavior

in single connection ad hoc routing [114], the behavior in mesh networks at full

throughput is unclear. In theory, optimal multipath routing is more general than

optimal single path routing, and hence multipath routing cannot provide any lower

throughput than single path. However, it is unknown the degree to which multi-

path routing is required for maximum throughput. Figure 8.7 shows the fraction of

connections that use multiple paths. Note that Algorithm 10 might generate multi-

ple paths, however, the scheduling algorithm might not allocate data flow to some

paths. Thus, we say that a connection φ uses multiple paths if there exist k and j

with k 6= j and fφ,k > 0 and fφ,j > 0. As can be observed in Figure 8.7, a large

majority of the connections require multiple paths. Note that a significant number

of the paths were only a single hop. Thus, Algorithm 10 chooses to even augment

paths that are one hop from the gateway with multi-hop paths.
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Figure 8.8: A comparison of the (sub)optimal throughput and the throughput
provided by a single path routing that is a quantized version of
(sub)optimal routing.

While Figure 8.7 indicates that optimality makes significant use of multiple

paths, it does not indicate the impact of allowing multipath routing has on rout-

ing. Since optimal single path routing is a non-convex optimization [109], a precise

comparison between optimal multipath routing and optimal single path routing is

computationally complex. Nonetheless, an idea of the performance of single path

routing can be gleaned by considering a single path routing that is a "quantized"

version of multipath routing as follows. As mentioned above, even when there are

multiple paths between a single source-destination pair, the scheduling algorithm

need not allocate data flow to all available paths. For the paths that do have non-

zero data flow, each path does not necessarily have the same data flow. Thus, for

each connection φ, we can select a single path P (φ, k) such that fφ,k ≥ fφ,j for all

j. If there are multiple paths with the same maximal data rate, then one is selected

arbitrarily. Once the paths have been selected, the scheduling algorithm is used to

compute the optimal throughput under the single path routing. Figure 8.8 shows

the ratio of the throughput given by this single path routing and the (sub)optimal

routing. As can be observed, the (sub)optimal routing provides no more than 20%

higher throughput and generally less than 15% higher throughput than the sin-

gle path routing. This is considerably less than the improvement of (sub)optimal
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routing over least hop routing and max-flow routing (See Figure 8.3).

Note that when multipath routing is used, the address of the destination does

not specify the route (or next hop). Hence, a labeling scheme or full source routing

must be used. Moreover, if a single TCP flow is split over multiple paths, packet

reordering is likely to occur. If packets are reordered by more than three, then TCP

will assume a packet has been dropped and will decrease the congestion window

and sending rate. While solutions to this problem exist [115], they are not widely

deployed. Thus, when including the reduction in throughput due to the overhead

to support, the difficulty in that multipath routing has on TCP, and the minimal

increase in throughput provided by multipath routing, there appears to be little

motivation to deploy multipath routing. However, in the next section we will see

that multipath routing does provide significant advantages of single path routing

algorithm described above.

8.6 Dynamic Routing and Scheduling

As discussed in Section 8.2, popular throughput metrics include G
³
f
´
=P

φ∈Φwφ log (
P

k fφ,k) and G
³
f
´
= minφ∈Φwφ

P
k fφ,k. Both approaches include

administrative weights, {wφ : φ ∈ Φ}. One simple approach to setting the weights is

to set the weights statically and for each end-host to end-host (e2e) connection that

uses router-to-router connection φ to equally share the throughput allocated to φ.

Consider the case where e2e connections start at Poisson distributed times and the

mean connection size is β. Let

C (w) = maxmin
φ∈Φ

wφ

|P (φ)|X
k=1

fφ,k

subject to: (8.2)-(8.4).

Then, allocating each connection φ throughput C
³
1
´
, where 1 is the vector of all

ones, supports the maximum e2e connection arrival rate with the finite expected
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number of active e2e connections. More generally, if the average e2e connection

size over φ is βφ, then setting wφ = 1/βφ allows for the fastest arrival rate of e2e

connections.

As compared to statically set weights, dynamically setting weights may im-

prove the average time to complete an e2e connection (but, of course, will not

change the maximum arrival rate such that the expected number of e2e connections

is finite). One approach is to set wφ (t) = 1/Nφ (t) where Nφ (t) is the number of

active e2e connections that are using connection φ at time t. In this case, each e2e

connection is allocated throughput C (w (t)).

It is also possible to adjust the routing dynamically. As above, the weights

could be set according to wφ (t) = 1/Nφ (t) and Algorithm 10 is applied to com-

pute routing and scheduling. However, considering the computational complexity

of Algorithm 10, it is not practical to recompute the routing sufficiently quickly

enough to accommodate the high rate of arrivals of e2e connections. On the other

hand, max-flow based routing is highly efficient, and hence, the scheme described in

Section 6.1.2.1 could be applied to accommodate time-varying offered load 1.

Thus, three approaches are considered.

1. Compute the optimal multipath routing via Algorithm 10 withwφ = 1 for all φ.

This routing is left fixed, but the weights are set according to wφ (t) = 1/Nφ (t)

and a new schedule is computed whenever a new flow starts or ends.

2. Compute the optimal multipath routing via Algorithm 10 with wφ = 1 for all

φ and then convert this multipath routing into single path routing as described

in Section 8.5.5. This routing is left fixed and the weights are set according to

1 Since many flows in the Internet consists of very few packets, it is not practical
to recompute anything every time a new connection starts. However, there are
many options for accommodating very small flows. Hence, this issue is left for
future work.
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Figure 8.9: Average number of ongoing connections when subjected to Poisson
connection arrivals and exponentially distributed connection size. Uti-
lization of 1 corresponds to the maximum capacity provided by optimal
routing

wφ (t) = 1/Nφ (t) and a new schedule is computed whenever a new flow starts

or ends.

3. Whenever a new e2e connection starts or an old connection finished, set

wφ (t) = 1/Nφ (t) and compute new routing and scheduling with the max-flow

based scheme described in Section 6.1.2.1.

Figure 8.9 shows the average number of ongoing connections in the network

for different topologies and different levels of network utilization. The connection

interarrival time was exponentially distributed as was the connection size. The x-

axis is in terms of the utilization under optimal routing. The vertical lines in Figure

8.9 indicate the maximum throughput achievable by the different schemes. (Hence,

the vertical line at ρ = 1 corresponds to the maximum utilization that optimal

routing can support.) As discussed in Sections 6.1.2.1 and 8.5.3, max-flow based

routing provides less throughput than optimal multipath routing and single path

routing developed in Section 8.5.5. However, max-flow routing dynamically varies

the routing in response to variations in demand, it is able to significantly outperform

single path routing, until the offered load nears the maximum throughput that max-

flow routing can support. On the other hand, even with static routing, optimal
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multipath routing significantly outperforms max-flow based routing. and, of course,

optimal routing also provides the highest throughput.

Therefore, we suggest the following. Since optimal multipath routing pro-

vides the maximum throughput, it should be used. However, since the computation

time of multipath routing is considerable, when a topology change occurs, max-flow

routing should be used until multipath routing can be recomputed.

Note that there are many alternatives that were not investigated here. In-

deed, it is clear that maximizing throughput does not necessary provide the best

performance even in terms of closely related metrics such as the average time to

complete a connection. On the other hand, while well planned wired network rarely

reaches full throughput, and hence performance at lower utilization might be more

relevant than peak throughput. On the other hand, since wireless bandwidth is

scarce, it is possible that performance near maximum throughput is critical.

8.7 Conclusion

Employing a recently developed algorithm to compute optimal schedules

under realistic propagation models, this work explores joint optimal routing and

scheduling. An iterative algorithm for optimal routing is developed along with an

approximation of the optimal algorithm. However, in the networks examined, the

approximation yields the same throughput as the optimal algorithm. Several as-

pects of the behavior of the approximating algorithm are explored. For example, it

is found that in realistic topologies, the proposed algorithm improves throughput by

60% over least hop routing and 20-35% over routing based on max-flow. Behavior of

the routing in the face of time-varying offered load is also examined. It is found that

a routing algorithm that provided higher throughput does not necessarily translate

into better performance even in terms of metrics that are closely related to through-

put. Future work will consider these aspects of performance since they are more

aligned with user perceived performance.
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8.8 Appendix

8.8.1 Proof of Proposition 23

Proof. We consider the optimization with nonlinear objective function, i.e.,

G (f) =
P

φ∈Φ Uφ (
P

k fφ,k). The case of G (f) = minφ∈Φwφ

P
k fφ,k follows the

same approach.

Consider the optimization problem

max
X
φ∈Φ
φ6=φ+

Uφ

ÃX
k

fφ,k

!
+ Uφ+

⎛⎝X
k 6=k+

fφ+,k + fφ+,k+

⎞⎠ (8.8)

subject to:
X

{(φ,k)|x∈P(φ,k)}

fφ,k ≤
X
v∈V

αvR (v, x) ∀x

fφ+,k+ ≤ bφ+,k+

0 ≤ fφ,kX
v∈V

αv ≤ 1

0 ≤ αv for each v ∈ V.

The Lagrangian for (8.8) is

L
³−→
f ,−→α , γφ+,k+,

−→µ , λ,−→σ
´

= −Uφ+

⎛⎝X
k 6=k+

fφ+,k + fφ+,k+

⎞⎠
+
X

µl

⎛⎝ X
{(φ,k)|x∈P (φ,k)}

fφ,k −
X

αvR (v, x)

⎞⎠
+γφ+,k+

¡
fφ+,k+ − bφ+,k+

¢
− σφ+,k+fφ+,k+

+λ

ÃX
v∈V

αv − 1
!
−
X
φ∈Φ
φ6=φ+

Uφ

ÃX
k

fφ,k

!

−
X

(φ,k)6=(φ+,k+)

σφ,kfφ,k
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where all Lagrange multipliers, γφ+,k+ ,µ, λ,σ are non-negative. The dual function

is

q
¡
γφ+,k+ ,µ, λ,σ

¢
(8.9)

= inf
fφ+,k+

−Uφ+

⎛⎝X
k 6=k+

fφ+,k + fφ+,k+

⎞⎠
+fφ+,k+

⎛⎜⎝ X
l∈P(φ+,k+)

µl + γφ+,k+ − σφ+,k+

⎞⎟⎠+D

where D represents other terms that do not depend on fφ+,k+. From (8.9), fφ+,k+ is

such that

0 =
d

dfφ+,k+

⎛⎝−Uφ+

⎛⎝X
k 6=k+

fφ+,k + fφ+,k+

⎞⎠
+fφ+,k+

⎛⎜⎝ X
x∈P(φ+,k+)

µx + γφ+,k+ − σφ+,k+

⎞⎟⎠
⎞⎟⎠

or

U 0
φ+

ÃX
k 6=ko

fφ+,k + fφ+,k+

!
(8.10)

=
X

l∈P(φ+,k+)

µl + γφ+,k+ − σφ+,k+,

where U 0
φ+
(f) = d

df
Uφ+ (f).

Consider the set of problems with different values of bφ+k+, specifically, con-

sider the sequence of problems indexed by n with bφ+,k+ (n) > 0 and limn→∞

bφ+,k+ (n) = 0. In the limit, flow
¡
φ+, k+

¢
not being used (i.e., fφ+,k+ = 0),

and the solution is the same as the original optimization (e.g., the multipliers µ
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and λ are unchanged). Since fφ+,k+ = 0, we have U 0
φ+

³P
k 6=k+ fφ+,k + fφ+,k+

´
=

U 0
φ+

³P
k 6=k+ fφ+,k

´
. Thus, from (8.10), if

U 0
φ+

⎛⎝X
k 6=k+

fφ+,k

⎞⎠ <
X

x∈P(φ+,k+)

µx (8.11)

then γφ+,k+ > 0. Thus, by sensitivity analysis of Lagrange multiplier theory, if and

only if (8.11) holds, then the throughput will increase if bφ+,k+ is increased. That

is, the throughput will increase if data is allowed to be sent over path P
¡
φ+, k+

¢
.

Next we show that

U 0
φ+

⎛⎝X
k 6=k+

fφ+,k

⎞⎠ =
X

l∈P(φ+,ko)

µl. (8.12)

To see this, the same analysis as above can be done but with k+ replaced with

ko. Furthermore, since data is allowed to flow over flow
¡
φ+, ko

¢
we have bφ+,ko =

∞. Hence, the constraint fφ+,ko ≤ bφ+,ko is not active, and therefore, γφ+,ko = 0.

Moreover, since fφ+,ko > 0, the constraint fφ+,ko ≥ 0 is not active, and hence

σφ+,ko = 0. Hence, (8.10) implies (8.12). Finally, substituting the right-hand side of

(8.12) into the left-hand side of (8.11) results in (8.5).

8.8.2 Proof of Proposition 27

Proof. In Problem (8.1), not all flows are considered. We denote the set of

considered paths P. We define a shadow problem where all possible paths are

included, but the data rate along any path not in P is restricted so that the data

rate crossing these flows is no greater than ε. Hence, as ε→ 0, the solutions to the

shadow problem and the original problem are the same. However, in the case of the

shadow problem, the Lagrange multiplier for each link is known. Specifically, let L

be the set of links used by any path in P and let A be the set of all links. Then, by

computing the optimal schedule when the paths P are considered, we can determine

134



µx for x ∈ L. And, from the optimal schedule where all paths are considered, µx is

known for all links x ∈ A. It is straightforward to verify that for x ∈ L, the µx is

the same in both cases. Moreover, λ is also the same.

Let z ∈ A\L. An assignment that includes z is {z}∪MWIS (CG [A\ ({z} ∪ χ (z))]).

By Proposition 2,

µzRz +
X

x∈MWIS(CG[A\({z}∪χ(z))])

µxRx ≤ λ.

Since X
x∈MWIS(CG[L\({z}∪χ(z))])

µxRx

≤
X

x∈MWIS(CG[A\({z}∪χ(z))])

µxRx

we have

µzRz ≤ λ−
X

x∈MWIS(CG[L\({z}∪χ(z))])

µxRx

which is the desired result.
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Chapter 9

OPTIMAL SCHEDULES WITH POWER CONTROL

AND MULTIPLE BIT RATES

9.1 Introduction

Much of the previous research on optimal scheduling has only considered a

single transmission power and a single bit-rate1. However, today’s implementations

of 802.11a/b/g/n and 802.16 support a wide range of bit-rates and transmission

powers. This chapter develops techniques to accommodate a set of transmission

powers and a set of bit-rates into optimal scheduling; thus, the schedule not only

specifies when a link should transmit, but also specifies which bit-rate and trans-

mission power are used for the transmission. This chapter also explores the impact

that transmission power and bit-rates have on the performance of scheduling, which

includes the computation time and the computed throughput.

The schedule optimization over a set of bit-rates and a set of transmission

powers results in a higher dimension problem than when the optimization is over

only a single bit-rate and a single transmission power. In most cases, this added

flexibility results in an increase in the computation time as well as an increase

in the computed throughput. Thus, this work examines heuristic schemes that

consider various subsets of bit-rates and transmission powers in hope of increasing

the computed throughput without greatly increasing the computation time.

1 Important exceptions include [47] and [8].
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The main conclusion is that there is no need to consider a continuum of

transmission powers, rather only two transmission powers for each link need to be

considered. Considering a continuum of transmission powers greatly increases the

computation time, but only slightly increases the computed throughput. Similarly,

optimizing over an increasing number of bit-rates increases the computed through-

put. As compared to using a single bit-rate, using two bit-rates results in a moderate

increase in throughput and a relatively small increase in computation time. How-

ever, as more bit-rates are considered, the increase in throughput is smaller and the

increase in computation time is larger. Roughly speaking, the "sweet spot", where

considering more bit-rates and/or considering more transmission powers greatly in-

creases computation time and only incrementally improves throughput occurs with

two or three bit-rates and two transmission powers. The results in this work provide

guidelines for making such a trade-off between computed throughput and computa-

tion time.

The remainder of this chapter is as follows. In the next section, notation and

the problem definitions are given. There are two classes of techniques, namely, one

where the transmission power can take a continuum of values and one where the

transmission power can only take values from a discrete set. Section 9.3 presents

techniques to compute optimal schedules which are extended to support multiple

bit rates and multiple transmission powers. Various subsets of bit-rates and trans-

mission powers over which the optimization is performed are developed in Section

9.4. Section 9.5.1 discusses the set-up for the computational experiments and Sec-

tions 9.5.2 to 9.5.6 present the results from the computational experiments. Finally,

concluding remarks are in Section 9.6.

9.2 System Model and Problem Formulation

When considering multiple powers and bit-rates, the concept of a logical link

arises. For example, a physical link may support M modulation/coding schemes.
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This can be modeled as M logical links, each with a different bit-rate, but between

the same pair of physical nodes. In this case, the logical link xm would refer to the

physical link x transmitting at the mth modulation/coding scheme. We drop the

terms physical and logical unless it is unclear from context.

A schedule is defined as a convex combination of assignments, where an

assignment specifies which logical links are transmitting along with the transmission

power and bit-rates used by the transmitting links. Since links are permitted to use

different modulation schemes and different transmission powers, the definition of

an assignment must be generalized. The next two sections develop the case where

the transmission powers can take a continuum of values and the case where the

transmission powers can only take values in a discrete set.

9.2.1 The Continuous Power Case

While today’s radios only support a relatively small number of bit-rates, they

could support nearly a continuum of transmission powers. In the case of multiple

bit-rates and variable transmission power, it is convenient to write an assignment

in terms of a pair (v,p) where v ∈ {0, 1}L×M and vx,m = 1 implying that link x

is transmitting with modulation scheme m. The vector p specifies the transmission

powers, i.e., px is the transmission power of link x. Of course, we require px = 0

if vx,m = 0 for all m. Thus, (v,p) ∈ {0, 1}L×M × [0, pmax]L, where pmax is the

maximum allowable transmission power. Since the space of all pairs of assignments

and transmission powers is very large, we often consider a subset VP ⊂ {0, 1}L×M ×

[0, pmax]
L, which is referred to as the set of considered assignments.

We define the SINR at the receiver of link x as

SINR (x,p) :=
Hx,xpxP

y 6=xHy,xpy +N0
,

where Hx,x is the channel gain across link x, Hy,x is the channel gain from the

transmitter of link y to the receiver of link x, and N0 is the channel noise. Then,
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the data rate across link x during assignment (v,p) is approximated as

R ((v,p) , xm) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Rxm if SINR (x,p) > T (x,m)

and vxm = 1, vxn = 0 for n 6= m

0 otherwise,
(9.1)

where Rxm is link x’s mth nominal data rate and T (x,m) is the SINR required to

achieve this data rate. Specifically,

T (x,m) = min

⎧⎨⎩T
¯̄̄̄
¯̄PSP

³
Hx,xpmax

N0 ,m
´
− PSP (T ,m)

PSP
³
Hx,xpmax

N0 ,m
´ < G1

⎫⎬⎭ ,

where PSP (T ,m) is the probability of successfully transmitting a packet when the

SINR is T and the mth modulation scheme is used, pmax is the maximum allowable

transmission power, and G1 = 0.01.

A schedule is a convex combination of assignments. Specifically, a sched-

ule is a set
©
α(v,p) : (v,p) ∈ VP

ª
where

P
(v,p)∈VP α(v,p) ≤ 1 and α(v,p) ≥ 0.

With this notation, the total data rate that the schedule α provides over link x

is
P

(v,p)∈VP α(v,p)
PM

m=1R ((v,p) , xm). In this scenario, the throughput maximiza-

tion problem is

max
α,f

G (f) (9.2a)

subject to:X
{φ|x∈P (φ)}

fφ ≤
X

(v,p)∈VP

αv,p

MX
m=1

R ((v,p) , xm) for each link x (9.2b)

X
(v,p)∈VP

α
(v,p)
≤ 1 (9.2c)

0 ≤ α(v,p) for each (v,p) ∈ VP, (9.2d)

where f is the vector of flow rates. The function G is referred to as the throughput

metric, and G (f) = minφ∈Φwφfφ is considered in this work.
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9.2.2 The Discrete Power Case

Problem (9.2) can be simplified by considering a discrete set of transmission

powers instead of a continuum. While this approach is similar to the approach

above, it requires slightly different notation.

Suppose that there are M modulation/coding schemes and S transmission

powers available for each link, then associated with each physical link x is the set

of logical links xm,s with 1 ≤ m ≤ M and 1 ≤ s ≤ S. In this case, the assignment

specifies which links are transmitting, their bit-rate, and their transmission power.

Specifically, an assignment v ∈ {0, 1}L×M×S, where vxm,s = 1 implies that the

physical link x is transmitting at bit-rate m and with power pxm,s . Note that, pxm,s

need not be the same as pym,s or pxn,s , that is, the set of transmission powers depend

on the link and the modulation scheme. Due to the large size of {0, 1}L×M×S, we

consider subsets V ⊂ {0, 1}L×M×S, where V is referred to as the set of considered

assignments.

The data rate across logical link xm,s during assignment v is denoted by

R (v, xm,s). As above, a simple binary approximation is used to define R (v, xm,s).

Specifically,

R (v, xm,s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Rxm,s if vyn,t = 0 for all yn,t ∈ χ (xm,s) ,

yn,t 6= xm,s and vxn,t = 0 for xn,t 6= xm,s

0 otherwise,

(9.3)

where χ (xm,s) is the set of logical links that are in conflict with xm,s, i.e., yn,t ∈

χ (xm,s) if simultaneous transmissions over logical link xm,s and logical link yn,t are

not possible. Rxm,s is the nominal data rate over logical link xm,s. The details of the

communication model for multi-bit rates and multi-powers are provided in Section

4.2.5.
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With this notation, the throughput maximization problem with discrete

transmission powers is

max
α,f

G (f) (9.4a)

subject to:X
{φ|x∈P (φ)}

fφ ≤
X
v∈V

SX
s=1

MX
m=1

αvR (v, xm,s) for each link x (9.4b)

X
v∈V

αv ≤ 1 (9.4c)

0 ≤ αv for each v ∈ V. (9.4d)

9.3 Optimal Scheduling

9.3.1 Algorithms

Themain challenge to solve (9.2) and (9.4) is that the space VP = {0, 1}L×M×

[0, pmax]
L and V = {0, 1}L×M×S are very large. Thus, the size of the space over which

the optimization is performed must be reduced. In Chapter 3, a technique was de-

veloped that focuses on finding a small set of considered assignments VP (or V)

such that the throughput is optimal when (9.2) (or (9.4)) is solved over VP (or

V). Algorithms 12 and 11 find such a set of assignments iteratively. It was shown

that these algorithms converge geometrically when G (f) = minφ∈Φwφfφ and alge-

braically when G (f) =
P

φ∈Φwφ log (fφ). However, these algorithms require solving

(9.6) or (9.5) each iteration.

9.3.2 Finding New Assignments - The Discrete Power Case

9.3.2.1 Basic Approach

It is well known that solving (9.5) is equivalent to solving the graph theoretic

problem known as the maximum weighted independent set (MWIS) problem. The
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Algorithm 11 Computing an Optimal Schedule (Discrete Powers Case)

1: Set k = 0, then select an initial set of assignments V(0) and a empty assignment
v+.

2: repeat
3: Set V (k + 1) = V (k) ∪ v+, and set k = k + 1.
4: Solve (9.4) for V = V(k) and compute µ(k) and λ(k), the Lagrange multipliers

associated with constraints (9.4b) and (9.4c), respectively.
5: Search for an assignment v+ /∈ V(k) that solves

v+ ∈ arg max
v/∈V(k)

LX
x=1

µx(k)
MX
m=1

SX
s=1

R (v, xm,s) . (9.5)

6: until
7: No such an assignment is found or

PL
x=1 µx(k)

PM
m=1

PS
s=1R (v

+, xm,s) ≤
λ(k).

exact method described in Section 5.2.4.1 can be extended. Specifically, a set of

cliques
©
Qi, i = 1, 2, ...Q

ª
are found such that if yn,t ∈ χ (xm,s), then there is a clique

Qi such that xm,s ∈ Qi and yn,t ∈ Qi. Then, MWIS problem can be formulated as

max
v

LX
x=1

µx

MX
m=1

SX
s=1

Rxm,svxm,s (9.7)

subject to:
X

xm,s∈Qi

vxm,s ≤ 1 for i = 1, 2, ..., Q

vxm,s ∈ {0, 1} .

9.3.2.2 Removing Multi-Conflicts

Binary communication models do not account for the impact of the aggregate

of interference from several simultaneously transmitting links. Removing multi-

conflicts described in Section 5.3 can be extended as follows.

Let v+ be a new assignment found by solving (9.7). Check whether this

assignment has any multi-conflicts, by determining whether there is a xm,s with
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Algorithm 12 Computing an Optimal Schedule (Continuous Power Case)

1: Set k = 0, then select an initial set of assignments VP(0) and a empty
assignment-transmission power pair (v+,p+).

2: repeat
3: Set VP (k + 1) = VP (k) ∪ (v+,p+), and set k = k + 1.
4: Solve (9.2) for VP = VP(k) and compute µ(k) and λ(k), the Lagrange mul-

tipliers associated with constraints (9.2b) and (9.2c), respectively.
5: Search for an assignment-transmission power pair (v+, p+) /∈ VP(k) that

solves ¡
v+,p+

¢
∈ arg max

(v,p)/∈VP(k)

LX
x=1

µx(k)
MX
m=1

R ((v,p) , xm) . (9.6)

6: until
7: No such an assignment is found or

PL
x=1 µx(k)

PM
m=1R ((v

+,p+) , xm) ≤ λ(k).

v+xm,s
= 1 and

PSP
³
Hx,xpxm,s

N0 ,m
´
− PSP

µ
Hx,xpxm,s

L
y=1,y 6=x

M
n=1

S
t=1Hy,xpyn,tvyn,t+N0

,m

¶
PSP

³
Hx,xpxm,s

N0 ,m
´ > G1.

If such a xm,s exists, then add the found multi-conflict into the ILP (9.7) as follows.

Let C =
n
xm,s|v+xm,s

= 1
o
, that is, C is the set of links that make up the multi-

conflict. Intuitively, C should be the smallest set of links that form the multi-conflict

at link xm,s. This multi-conflict can be removed from consideration by using the

following ILP problem to search for new assignments,

max
v

LX
x=1

µx

MX
m=1

SX
s=1

Rxm,svxm,s (9.8a)

subject to:
X

xm,s∈Qi

vxm,s ≤ 1 for i = 1, 2, ..., Q (9.8b)

X
xm,s∈C

vxm,s ≤ |C|− 1 (9.8c)

vxm,s ∈ {0, 1} , (9.8d)

where |C| is the number of elements in C. Again, it is determined whether the

assignment found by solving (9.8) has multi-conflicts and if so, another constraint

143



such as (9.8c) is added to the ILP. This process continues until an assignment is

found that does not have a multi-conflict.

9.3.3 Finding New Assignments - The Continuous Power Case

Here we seek to find a new assignment-transmission power pair that solves

(9.6), where R is given by (9.1). Thus, the desired assignment-transmission power

pair is the solution to

max
(v,p)

LX
x=1

µx

MX
m=1

Rxmvxm

such that:
Hx,xpxP

y 6=xHy,xpy +N0
> T (x,m) if vxm = 1. (9.9)

In theory, constraint (9.9) is equivalent to

Hx,xpx − T (x,m)
ÃX

y 6=x
Hy,xpy +N0

!
>∞× (vxm − 1) , (9.10)

since, when vxm = 0, (9.10) is always true (assuming that∞× 0 = 0). Of course, in

practice,∞ is replaced with some large number. While further tuning is possible, we

have found that new assignment-transmission power pairs can be found by solving

the following mix-integer programming problem.

max
v

LX
x=1

µx

MX
m=1

Rxmvxm

subject to: Hx,xpx − T (x,m)
ÃX

y 6=x
Hy,xpy +N0

!
> (9.11a)

− Γxm (1− vxm) for each link x and modulation m = 1, 2, ...,M
MX
m=1

vxm ≤ 1 for each link x (9.11b)

MX
m=1

vxm +
MX
m=1

vym ≤ 1 if y ∈ NE (x) (9.11c)

0 ≤ px ≤ pmax for each link x

vxm ∈ {0, 1} ,
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where

Γx,m = T (x,m)
ÃX

y 6=x
Hy,xPmax +N0

!
(9.12)

and where NE (x) is the set of links y such that y’s transmitter or receiver is the

same as either x’s transmitter or receiver.

9.4 A Prior Bit-Rate and Transmission Power Selection

A critical challenge facing throughput maximization when multiple powers

(or variable power) and multiple bit-rates are available is the large optimization

space. Algorithms 12 and 11 dramatically reduce the optimization space. How-

ever, if a large number of bit-rates and transmissions powers are available, then the

problem remains computationally complex. The size of these problems can be re-

duced by considering only a subset of the possible bit-rates and only a subset of all

possible transmission powers. The subset of bit-rates and transmission powers are

referred to as the set of considered bit-rates and the set of considered transmission

powers, respectively. There is no surprise that such a prior selection might reduce

the computed throughput. Also, it should be noted that these sets were designed

after extensive experimentation, but are purely based on heuristics.

9.4.1 Sets of Considered Bit Rates

Assume that different modulation/coding schemes are indexed by an integer

between 1 and M , where we assume that a larger index implies a higher bit-rate.

To make the problem concrete, we will focus on the modulation/coding used by

802.11a. Figure 9.1 shows the relationship between the probability of successful

packet transmission (PSP) and the SINR where 1000B packets are assumed. This

relationship is assumed to be the same as the relationship between PSP and SNR.

Note that 802.11a supports eight bit-rates, and yet Figure 9.1 only shows seven

bit-rates, 9 Mbps is missing. The reason is that the relationships between SNR and
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Figure 9.1: Relationship between packet success probability (PSP) and SINR for
802.11a

PSP at 9 Mbps and at 12 Mbps are the same. Thus, there is no need to consider

the 9 Mbps bit-rate.

For a particular SNR, a link can support a maximum data rate m∗ (x, p)

which is derived from

m∗ (x, p) : = argmax
m

PSP

µ
Hx,xp

N0
,m

¶
BR (m)

subject to
PSP

³
Hx,xp
N0 ,m

´
− PSP

³
Hx,xp
N0 −G2−G3,m

´
PSP

³
Hx,xp
N0 ,m

´ ≤ G1,

where p is the maximum allowable power. For simplicity of presentation, we use the

following notation.

Let m∗ = m∗ (x, pmax), m∗ − k = max (m∗ (x, pmax)− k, 1), and m∗/i =

round(m∗ (x, pmax) /i) where k and i are integers.

Once the maximum bit rate is selected, a wide range of possible approaches

are available for selecting the set of bit rates. For example, a set of two bit rates

{m∗,m∗ − 1} of each link can be considered. Note that m∗ depends on the link.

Thus, if the set of considered bit-rates is {m∗,m∗ − 1}, then link x uses m∗ (x, pmax)
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and max(m∗ (x, pmax) − k, 1), and thus, different links do not necessarily use the

same modulation/coding schemes.

9.4.2 Sets of Considered Transmission Powers

Once the set of considered bit-rates is selected, the set of transmission powers

can be selected. Two obvious options are

• Max Power P (x,m) = {pmax}

• Continuum of Powers P (x,m) = [0, pmax].

Between these approaches is a wide range of techniques to select a finite set

of transmission powers. However, for a particular modulation/coding scheme, if the

transmission power is too low, then transmission is not possible. Thus, we define

the minimum transmission power pmin (x,m) via

pmin (x,m) := min

⎧⎨⎩p :
PSP

³
Hx,xp
N0 ,m

´
− PSP

³
Hx,xp
N0 −G2−G3,m

´
PSP

³
Hx,xp
N0 ,m

´ ≤ G1

⎫⎬⎭ .

With this, a third approach to selecting a set of candidate transmission powers is

• Two-Powers P (x,m) = {pmin (x,m) , pmax}

While there are many ways that two transmission powers can be selected,

this work only considers the above two powers. Hence, the term "two transmission

powers" refers to this specific selection of transmission powers. While other schemes

are also possible (e.g., three transmission powers), as discussed in Section 9.5.4, in

the topologies explored here, the above three sets of power provide a sufficiently rich

spectrum of techniques.
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9.5 Numerical Experiments

9.5.1 Computational Experimental Set-up

The topologies generated in Section 6.1.1 and the SINR protocol model with

Without Acks were considered. Each topology was based on a different 6 × 6 city

block region that was randomly located within a 2 km2 region of downtown Chicago.

Various node densities were investigated. Specifically, the number of gateways was

1, 3, and 6, and the number of wireless routers was 18, 36, 54, 72, and 90. The

wireless routers and gateways were uniformly distributed throughout the 6×6 city

block region. Ten samples of each topology were generated (hence, 150 topologies

in total).

As mentioned in Section 9.4.1, 802.11a data rates were used, and the through-

put metric used is G (f) = minφ∈Φ fφ. The computations below were performed on

a 2.4MHz AMD FX-53 processor with 8GB RAM.

9.5.2 Selecting a Set of Considered Bit-Rates and Considered Transmis-

sion Powers

Clearly, increasing the number of considered bit-rates and transmission pow-

ers might increase the computed throughput, but also might result in an increase

in the computation time. Thus, a single best set of bit-rates and transmission pow-

ers does not exist. Instead, this section will present a sequence of sets of bit-rates

and transmission powers that result in increasing the computed throughput while

limiting the increase in computation time. Furthermore, we seek to understand the

trade-off between the computed throughput and the computation time. This infor-

mation allows one to select a set of bit-rates and transmission power so as to make

a rational trade-off between the computed throughput and the computation time.

The first step toward this objective is to select sets of considered bit-rates that

provide a good trade-off between the computed throughput and the computation

time. To this end, we use the following notation.
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Figure 9.2: Relative Performance of Set of Considered Bit-Rates. (a), (b), and
(c) show the relative performance of sets of bit-rates with 2, 3, and 4
elements, respectively. The performance is relative to the average per-
formance of other sets of bit-rates with the same number of elements
and is averaged over all topologies and all three sets of considered
transmission powers.

Cτ
σ,ω is the throughput computed for the τth topology with σ transmissions

powers, and ω is the set of considered bit-rates. σ = 1 implies that P (x,m) =

{pmax}, σ = 2 implies that P (x,m) = {pmin (x,m) , pmax}, and σ =∞ implies that

P (x,m) = [0, pmax].

T τ
σ,ω is the time required to compute the optimal schedule for the τth topology

with σ transmission powers and the ωth set of considered bit-rates.

Let Ω (i) be a set of different sets of considered bit-rates where each set of

considered bit-rates has i elements. Suppose that ω has i elements, then we compare

ω to the other sets of considered bit-rates in Ω (|ω|), where |ω| is the number of

elements in ω, i.e., the number of bit-rates considered. Specifically, for a particular

ω, the vector⎛⎝ 1P
σ∈{1,2,∞}

P10
τ=1 1

X
σ∈{1,2,∞}

10X
τ=1

T τ
σ,ω

1
|Ω(|ω|)|

P
ϕ∈Ω(|ω|) T

τ
σ,ϕ

, (9.13)

1P
σ∈{1,2,∞}

P10
τ=1 1

X
σ∈{1,2,∞}

10X
τ=1

Cτ
σ,ω

1
|Ω(|ω|)|

P
ϕ∈Ω(|ω|)C

τ
σ,ϕ

⎞⎠
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Reduced
Computation Time

Maximized Throughput

1 Bit-rate ω∗ (1) := {m∗} ω+ (1) = {m∗}
2 Bit-rates ω∗ (2) := {m∗,m∗−1} ω+ (2) = {m∗,m∗/2}
3 Bit-rates ω∗ (3) := {m∗,m∗−1,m∗−2} ω+ (3) = {m∗,m∗−2,m∗−4}
4 Bit-rates ω∗ (4) := {m∗,m∗−1,m∗−2,min} ω+ (4) = {m∗,m∗−2,m∗−4,m∗−6}
7 Bit-rates ω∗ (5) :=all supported bit-rates ω+ (5) :=all supported bit-rates

Table 9.1: Good Performing Sets of Bit-Rates

gives the ratio of the computation time and the ratio of the throughput achieved

by ω as compared to the sets of considered bit-rates with the same number of

elements. Moreover, (9.13) is averaged over all topologies and all sets of considered

transmission powers. Figure 9.2 shows these points when the sets of considered bit-

rates have two, three, and four elements. Note that in Figure 9.2, the set Ω (i) does

not include all possible sets with i elements, but only the ones shown in the figure.

Figure 9.2 shows that, to a large extent, all the sets of considered bit-rates

with the same number of elements perform similarly. While selecting a set of con-

sidered bit-rates depends on the relative importance of maximizing throughput as

compared to reducing computation time, Figure 9.2 does provide some guidelines for

selecting sets of considered bit-rates. Table 9.1 summarizes the sets of bit-rates that

either reduce the computation time or maximize the computed throughput, where

the considered bit-rates ω∗ tend to reduce the computation time at the expense of

the computed throughput, whereas ω+ tends to maximize the throughput. Since

selecting bit-rates according to ω∗ can reduce the computation time by up to 20%

without having a significant impact of the computed throughput, we focus on the

performance achieved when using ω∗.

Figure 9.3 shows the relative increase in the computation time and the com-

puted throughput for different sets of considered bit-rates. Specifically, Figure

9.3 shows
³
1
10

P10
τ=1 T

τ
σ,ω∗(i)/T

τ
1,ω∗(1),

1
10

P10
τ=1C

τ
σ,ω∗(i)/C

τ
1,ω∗(1)

´
, where the summation
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Figure 9.3: Relative increase in the computed throughput and the computation
time for various topologies when the bit-rate selection scehemes listed
in the column labeled "Reduced Computation Time" are used.

over τ is over all ten topology samples. Figure 9.3 shows the performance for the

topologies with 36 wireless routers and with 1, 3, and 6 gateways. The behavior for

other topologies is similar. Note that T τ
1,ω∗(1) and Cτ

1,ω∗(1) are the computation time

and the computed throughput when only maximum allowable bit-rate and maxi-

mum transmission power are considered. Thus, Figure 9.3 shows the performance

relative to the baseline case where a single bit-rate and a single transmission power

are used.

Figure 9.3 indicates Pareto optimal sets of bit-rates and transmission powers

that increase the computed throughput and the computation time. Specifically, let-

ting σPiB represent the case where σ transmission powers are considered and ω∗ (i)

is the set of considered bit-rates, Table 9.2 provides a progression of schemes of

increasing complexity that result in increasing computed throughput and increas-

ing computation time. Thus, a trade-off between the computation time and the

computed throughput is achieved by selecting a stage from this ordering. This

progression results in a similar Pareto optimal sequence for the other topologies

Using this progression, Figure 9.4 shows the relationship between 1
10

P10
τ=1

T τ
σ,ω∗(i)/T

τ
1,ω∗(1), the average increase in the computation time, and

1
10

P10
τ=1C

τ
σ,ω∗(i)/C

τ
1,ω∗(1),
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Stage Scheme Stage Scheme
1 2P1B 5 2P4B
2 1P2B 6 2PAllB
3 2P2B 7 ∞P4B
4 2P3B 8 ∞PAllB

Table 9.2: Progression of Sets of Considered Bit-Rates and Transmission Power
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Figure 9.4: The relationship between the computation time and computed
throughput for different topologies when the set of considered trans-
missions powers and bit-rates vary according to Table 9.2 and the
bit-rate selection schemes are given by the column labeled "Reduced
Computation Time" in Table 9.1.

the average increase in the computed throughput. These metrics are averaged over

ten topology samples. It was beyond our computational abilities to compute the

optimal schedule for Stages 7 and 8 when there were 72 or 90 nodes in the topology.

Thus, Figure 9.4 only shows the first six stages for 72 and 90 wireless routers. A

few comments are in order.

• It can be observed that the first few stages provide considerable improve-

ment in throughput, while the last few stages provide little improvement of

throughput and require significantly more computation time. Specifically, the

improvement in throughput tends to converge as the stage number increases.

— Convergence is reached or is nearly reached by Stage 4 (two transmis-

sion powers and three bit-rates). Specifically, in half of the topologies
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examined, using a higher stage than Stage 4 increases the throughput by

no more than 2%, and in 95% of all topologies examined, using a higher

stage than Stage 4 increases the computed throughput by no more than

6%.

— The computation time to reach convergence is large. In half of the topolo-

gies, Stage 4 increases the computation time by more than a factor of 20,

and in 5% of the topologies, Stage 4 increases the computation time by

more than a factor of 500.

• Stage 3 also achieves high throughput; in 90% of the topologies, the throughput

achieved by Stage 3 is within 10% of the maximum throughput achieved by

any stage. In none of the topologies is the maximum throughput achieved by

any stage more than 15% larger than the throughput achieved by stage 3. The

mean and median of the computation time of Stage 4 was about twice that of

Stage 3.

• Considering more than two transmission powers results in only a slight im-

provement in throughput, but might dramatically increase the computation

time (This point is examined in more detail in Section 9.5.4).

• For a fixed number of gateways, the relative improvement in throughput for

different numbers of wireless routers is approximately the same. While it is

not shown in Figure 9.4, the absolute throughputs for different numbers of

wireless routers and the same number of gateways vary by more than a factor

of two.

• In many cases, the average Stage 1 gives a higher relative computed throughput

that is greater than one and the relative computation time is less than one.

Thus, in most cases, 2P1B provides higher throughput and lower computation
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Figure 9.5: The two-dimensional probability distribution of the improvement in
the throughput and the increase in the computation time when in-
creasing the number of considered bit-rates from four to seven. Each
box covers a range of increases in the throughput and the computa-
tion time. The number in each box is the probability of that range of
increases occurring.

time than 1P1B. As compared to 1P1B, 2P1B results in a larger optimization

problem, that is, since 2P1B has twice as many logical links as 1P1B, (9.4)

and (9.8) are larger. However, in the case of 2P1B, Algorithm 11 converges

faster, and hence the total computation time is less.

9.5.3 The Need for a Finer Set of Bit-Rates

The set of bit-rates provided by 802.11 a/g are separated by a factor of 1.5

and 1.33. Here we investigate whether it is possible that higher throughput can

be achieved by considering a finer set of bit-rates than those supported by 802.11

a/g. To this end, we examine the performance impact of changing from bit-rates

that are separated by a factor of 2 to the more finely spaced bit-rate supported

by 802.11a/g. For each topology τ and each of the three sets of considered trans-

mission powers σ, the vector
³
T τ
σ,ω+(5)/T

τ
σ,ω+(4), C

τ
σ,ω+(5)/C

τ
σ,ω+(4)

´
is the relative

increase in the computation time and the computed throughput when changing

from the set of considered bit-rates ω+ (4) (which is given in Table 9.1) to a set
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of all seven bit-rates (i.e., ω+ (5)). Figure 9.5 gives the probability distribution of³
T τ
σ,ω+(5)/T

τ
σ,ω+(4), C

τ
σ,ω+(5)/C

τ
σ,ω+(4)

´
, where the distribution is over one, two, and a

continuum of transmission powers and all 150 topologies.

Figure 9.5 indicates that in the typical case, considering the dense set of bit-

rates provides little improvement in the throughput as compared to considering only

the four sparsely distributed bit-rates. Furthermore, over the 150 topologies and the

three transmission power schemes examined, there is only a 5.6% probability that

increasing from four to all bit-rates will increase the throughput by more than 4%.

Since bit-rates separated by a factor of 1.5 and 1.3 do not result in significantly

higher throughput than bit-rates separated by a factor of 2, we conjecture that

bit-rates separated finer than those supported by 802.11 a/g will not significantly

increase the throughput.

In Section 9.2, (9.1) and (9.3) model the data rate across a link to be a

binary function, taking the value 0 or Rxm, which is the nominal data rate over

link x with the mth modulation/coding scheme. In practice, ARQ can be used

to achieve a continuum of data rates. For example, suppose that in the face of

moderate interference, PSP = 0.5. With ARQ, the effective data rate is RxmPSP .

This behavior is supported by the framework developed in Section 9.2 by employing

an alternative "modulation/coding scheme," say m0, where PSP (SINR,m0) :=

1− (1− PSP (SINR,m))2 and Rxm0 = Rxm/2. A similar approach can be used to

support a wide range of bit-rates between Rxm and 0. However, Figure 9.5 shows

that a finer gradation between bit-rates is not needed, and hence there is no need

to employ ARQ to achieve intermediate data rates.

9.5.4 The Impact of the Number of Considered Transmission Powers

Figures 9.3 indicates that considering two transmission powers provides a sig-

nificant advantage over a single transmission power and that considering a contin-

uum of transmission powers provides little improvement in the computed throughput
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Figure 9.6: The probabilities of improvements in throughput and increases in com-
putation time when switching from considering two transmission pow-
ers to a continuum of transmission powers.

and greatly increases the computation time. To examine this second observation in

more detail, Figure 9.6 shows the probability of different values of
¡
T τ
∞,ω/T

τ
2,ω, C

τ
∞,ω/C

τ
2,ω

¢
.

Note that each topology, τ , and each set of considered bit-rates, ω, results in a dif-

ferent value of
¡
T τ
∞,ω/T

τ
2,ω, C

τ
∞,ω/C

τ
2,ω

¢
. Figure 9.6 shows the probability distribution

of
³
T τ
∞,ω∗(i)/T

τ
2,ω∗(i), C

τ
∞,ω∗(i)/C

τ
2,ω∗(i)

´
over 150 topologies, and over i = 1, 2 , 3, 4,

and 5 for topologies with 18-54 wireless routers, and for i = 1, 2, 3, and 4 for

topologies with 72 and 90 wireless routers. In all, the probability distribution of³
T τ
∞,ω∗(i)/T

τ
2,ω∗(i), C

τ
∞,ω∗(i)/C

τ
2,ω∗(i)

´
was computed over 690 samples. Thus, Figure

9.6 shows the impact of switching from considering two transmission powers to con-

sidering a continuum of transmission powers.

As can be observed, considering a continuum of transmission powers increases

the throughput by more than 5% for only 5% of the cases examined. In general, when

switching from considering two transmission powers to considering any transmission

power, the mean increase in the computed throughput is 1.1% and the median

increase in the computed throughput is 0.6%. On the other hand, the mean increase

in the computation time is 2100% and the median increase in the computation time is

295%. Since a continuum of transmission powers provides only a small improvement
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in the throughput over two transmission powers, considering three or more discrete

transmission powers will not significantly increase the throughput. Note that since

the computed throughput is optimal for the particular set of considered bit-rates

and transmission powers, the conclusion that there is little utility to consider more

than two transmission powers holds even if more efficient computation schemes are

developed.

9.5.5 The Number of Bit Rates and Transmission Powers Used

Allowing the schedule to use a particular set of considered bit-rates and

transmission powers does not imply that each link uses all considered bit-rates and

transmission powers. For example, perhaps links with high channel gain will exclu-

sively use low transmission power and links with low channel gain will exclusively

use high transmission power. If this was the case, then high computed through-

put could be efficiently computed by employing the single "correct" bit-rate and

transmission power for each link. This section investigates this possibility.

As discussed in Section 9.2, an optimal schedule is defined by a set of weights

{αv|v ∈ V}, where αv is the fraction of time the schedule allocates to assignment

v. An assignment specifies which links transmit and at which bit-rate and power.

Specifically, vxm,s = 1 implies that during assignment v, link x transmits with the

mth modulation scheme and with transmission power pxm,s , the sth transmission

power. Thus, the relative fraction of time that link x uses bit-rate and transmission

power (m, s) is

F (x,m, s) :=
X

v∈{v|vxm,s=1}
αv.

For link x, themost-used bit-rate and transmission power (MUBRTP) is the (m+ (x) ,

s+ (x)) such that F (x,m+ (x) , s+ (x)) ≥ F (x, n, t) for all n and t. Figure 9.7 (a)

shows the average values of F (x,m+ (x) , s+ (x)) for different sets of considered bit-

rates and transmission power. Each point in Figure 9.7 is averaged over all topologies
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Figure 9.7: (a) The average value of F (x,m, s), the fraction of time that the most
used combination of bit-rate and transmission power is used. (b) The
ratio of the computed throughput from a 1-quantization and Cτ

1,ω(1).
(c) The ratio of the computed throughput from a 2-quantization and
Cτ
1,ω(1).

with the indicated number of gateways. As can be observed, the fraction of time

that the MUBRP is used is typically quite large. For example, in the case of 1

gateway and Stage 6, 14 different combinations of bit-rates and transmission powers

are considered. And yet, on average, each link uses one combination of bit-rate and

transmission power 86% of the time.

Now suppose that the MUBRP is known for each link. In this case, a new

bit-rate and transmission power scheme can be considered where each link only

transmits at its MUBRP. In this way, a set of considered bit-rates and transmission

powers induce a particular bit-rate and transmission power scheme. The resulting

scheme is referred to as a 1-quantization of the stage, since it results in a single

combination of bit-rate and transmission power. A k-quantization uses the k most-

used combinations of bit-rates and transmission powers.

Figure 9.7 (b) shows the ratio of the computed throughput with a 1-quantization

and the throughput that was achieved by the stage. Figure 9.7 (c) is the same as

Figure 9.7 (b), but with a 2-quantization. As can be observed, the throughput under
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Figure 9.8: Computation time for different stages, where the stages are defined by
Table 9.2.

the 1-quantization is quite poor. In fact, in many cases the throughput under the

1-quantization is below the throughput achieved with a single bit-rate and transmis-

sion power. On the other hand, the throughput of the 2-quantization is quite good,

with throughput within a few percent of what the unquantized stage achieves.

The performance of the 2-quantization motivates a search of two pairs of

bit-rates and transmission powers that achieve near optimal throughput. However,

despite our efforts, we have been unable to discover an a priori technique to deter-

mine these two pairs. Thus, currently, we are only able to find these special pairs

after the full computation is complete.

9.5.6 Computation Time Scaling

While the analysis above shows that using multiple powers and multiple bit-

rates can improve the computed throughput at the expense of the computation time,
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Figure 9.9: The time to compute the optimal schedule modeled at C ×
(Number of Wireless Node)E where the E is shown in (a) and the
C1/E is shown in (b). The stages are given in Table 9.2

this section shows the rate that the computation time grows with the size of the

network also increases as more transmission powers and bit-rates are considered.

Figure 9.8 shows the average computation time as a function of the number

of wireless routers for different numbers of gateways and for the first six stages given

by Table 9.2. Note that the relationship is approximately linear on the log-log plot,

indicating a polynomial relationship. The quality of the linear approximation is not

as good when the computation time is small, e.g., for the first stage and when there

are 18 nodes. The reason for this behavior is that since these computation times

are so small, they are dominated by such things as loading files and the memory

management. Considering networks with 36-90 wireless routers, by taking the log

of both sides, least squares can be used to solve for C and E in

Computation time = C ×Number of wireless routersE.

Figure 9.9 (a) and (b) shows the value of E and C as a function of the stage. As can

be observed, the exponent, E, increases as more bit-rates and more transmission

powers are considered. This increase is the most significant for networks with a

dense set of gateways.
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9.6 Conclusion

This work studied the impact of using power control and different bit-rates

to increase the computed throughput of a multihop wireless mesh network. As ex-

pected, optimizing over more bit-rates and transmission powers increases the com-

puted throughput at the expense of increasing the computation time. A broad con-

clusion of this work is that complex power control schemes will not greatly impact

the throughput and come at the expense of dramatic increase in computation time.

More specifically, this work found that it is sufficient to consider two transmission

powers and 2 or 3 bit-rates for each link.
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Chapter 10

CONCLUSIONS AND FUTURE WORK

10.1 Conclusion

This thesis presented practical techniques for computing optimal schedules

in multihop wireless networks even when co-channel interference arises. The critical

challenge facing optimal scheduling is the exponential optimization space which

makes the Linear or Nonlinear programming problem computationally complex and

even intractable. An iterative method to construct a small set of assignments was

proposed to reduce the optimization space but achieve the same optimality. As a

cost, a set of MWIS problems has to be solved, which has the worst case complexity

of NP hard. However, the MWIS problem is solvable in many practical wireless mesh

networks. Specifically, by examining over 10000 randomly generated topologies, it

was found that the time to compute the MWIS grows polynomially with the number

of nodes and linearly with the mean degree of the conflict graph. Moreover, the mean

time to solve the MWIS problem for networks with 2048 nodes was approximately

one second. The ability to quickly solve MWIS problems allows optimal schedules

to be quickly found.

This thesis also explored communication models used in computing optimal

throughput. It is found that the traditional protocol models, such as Node Exclusive,

2-hop Node Exclusive and Sensing protocol models have the drawback that they

do not accurately model interference. Therefore, the actual throughput provided

by these traditional protocol models is poor no matter how good the theoretical
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throughput offered. A general SINR protocol model is proposed to more accurately

represent the interference. Even if multi-conflicts are ignored, the SINR protocol

model exhibits good throughput when applied to a physical model. If we employ

techniques to correct multi-conflicts, then the final scheduling is feasible and the

actual throughput is no worse than the theoretical one.

The performance improvement provided by the optimal scheduling is signifi-

cant if there are a large number of gateways. For example, as compared to 802.11’s

CSMA/CA, optimal scheduling improves performance by a factor between 3 and 11,

with the improvement increasing as the density of gateways increases.

As it is possible to compute optimal schedules quickly, this thesis explores

joint optimal routing and scheduling. An iterative algorithm for optimal routing is

developed along with an approximation of the optimal algorithm. Lagrange multi-

pliers are used as the link cost to find the optimal path. In the networks examined,

the approximation yields the same throughput as the optimal algorithm. It is found

that in realistic topologies, the proposed algorithm improves throughput by 60%

over least hop routing and 20-35% over routing based on max-flow.

Finally, this thesis studied the impact of using power control and different

bit-rates to increase the computed throughput of a multihop wireless mesh network.

As expected, optimizing over more bit-rates and transmission powers increases the

computed throughput at the expense of increasing the computation time. A broad

conclusion of this work is that complex power control schemes will not greatly impact

the throughput and come at the expense of dramatic increase in computation time.

More specifically, this thesis found that it is sufficient to consider two transmission

powers and 2 or 3 bit-rates for each link.
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10.2 Future Work

10.2.1 Time-Varying Traffic Demands

The traffic demands can be represented with the weights wφ. Thus, when

traffic demands change, the wφ change, requiring a new schedule to be generated.

Determining a new schedule is a computationally complex task that may generate

considerable overhead. Note that there are two optimization problems. One problem

finds the optimal schedule for a given set of assignments. A second problem generates

new "good" assignments. We consider the second problem first.

10.2.1.1 Robustness of the Set of Considered Assignments

While further work remains, we have found that the set of optimal assign-

ments for one set of wφ provides good performance for a range of wφ. The intuitive

reason as to why this is the case is that the good assignments provide high link data

rates over a large set of links. Assignments that give high link rates are useful for a

wide range of wφ. Furthermore, while Theorem 1 implies that only L assignments

are required to be able to compute the optimal schedule, it is, of course, possible to

consider a larger set of assignments. In particular, a moderately large set of good

assignments can be precomputed such that for a very wide range of wφ, the optimal

schedule is within the convex hull of the set of assignments. In this case, when wφ

change, there is no need to recompute a new set of assignments. On the other hand,

if the number of considered assignments is too large, then it may take considerable

computational effort to solve (3.2). Therefore, we will examine the trade-off between

computational complexity and the ability to support a wide range of wφ.

Note that since the wφ are related to the traffic demands, it is also important

that the set of considered assignments be selected so that they can support the wφ

that are reasonably likely to arise. Since mesh networks are long-term deployments,

it is reasonable to estimate the traffic demands from network monitors. In fact, this

approach is often followed for traffic engineering in wired networks.
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10.2.1.2 System Framework for Traffic Adaptation

When the traffic demands change (i.e., the wφ change), a new schedule must

be computed. There are two classes of approaches to perform this computation.

In one approach, each node only uses information from its neighbors. In this way,

this class of approaches is similar to distance vector routing. The other approach

is that each router is aware of the network state (specifically, R and wφ) so each

router generates the same optimal schedule. This class of approaches is similar to

link state routing. The comparison to the link state/distance vector dichotomy is

useful. While distance vector routing has the nice feature that only communication

between neighbors is required, the convergence can be poor. In link state, overhead

is required to distribute the state of links. However, this overhead is viewed as

acceptable considering the good performance in terms of convergence time. For

this reason, link state routing is typically used in wired networks. Algorithms that

solve for schedules with only local information suffer from very slow convergence in

comparison to approaches with global knowledge.

It might be practical to occasionally distribute the wφ. Recall that the flow φ

represents the aggregate of flows from a wired base station to an IN. Each wφ may be

a single byte, and can be piggy-backed on transmissions. Thus, periodic or triggered

distribution of wφ might result in minimal overhead. Once each router knows the wφ

for every flow, each router can determine the optimal schedule. Since all routers have

the same information, they will all generate the same result. Note that the wφ are

similar to the link state information in link state routing. Thus, in the same way that

routers distributed link state information, and then individually compute the paths,

here the wφ are distributed and each router computes the schedule. In both cases,

the routers perform redundant computation, but the result is good performance in

terms of convergence and acceptable overhead.
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A key issue of this part of the investigation is how often wφ must be dis-

tributed to result in good performance for time-varying traffic demand. On the

one hand, the distribution of wφ could be limited to only times when the network

administrator is performing manual traffic engineering. On the other hand, one can

consider wφ being updated each time a new flow starts. Of course, there is a wide

spectrum of schemes between these two ends of the spectrum that need to be in-

vestigated. While the overhead of distributing the weights must be considered, the

computational load on each router must also be considered.
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